Cannabinoids
Article by Justin L Scharton, Independent Researcher
Last updated 12/19/2024
Cannabinoids are a diverse group of naturally occurring compounds with tetrahydrocannabinol (THC) and cannabidiol (CBD) being the most recognized. There are at least 150 different cannabinoids, and each has unique properties and benefits. These compounds interact with various receptors and signaling pathways in the human body, influencing processes related to pain, inflammation, mood, appetite, and more.
Most of the cannabinoids do not have much research that investigated their benefits. Nine of them have the most research that show a lot of health benefits to them. We will go over:
CBC - Cannabichromene
CBD - Cannabidiol
CBDA - Cannabidiolic Acid
CBDV - Cannabidivarin
CBG - Cannabigerol
CBN - Cannabinol
THC - Tetrahydrocannabinol
THCA - Tetrahydrocannabinolic Acid
THCV - Tetrahydrocannabivarin
CBC
Cannabichromene


CBC is a TRPA1 agonist and an anandamide reuptake inhibitor(70A)
Cannabichromene (CBC) is one of the lesser-researched cannabinoids, with limited information available compared to more widely studied compounds like THC and CBD. CBC is a trace cannabinoid that is in small concentrations in cannabis plants. Despite the limited research, CBC has shown potential in a few areas.
CBC as an anti-inflammatory
CBC is an anti-inflammatory through targeting the NLRP3 inflammasome and IL-6/STAT-3, reducing inflammation without affecting NF-κB. It may also influence RNA editing.(69B)
CBC as a treatment for neurodegeneration
CBC inhibits amyloid β aggregation, making it a possible treatment for neurodegeneration like Alzheimer’s Disease.(56B)
CBC oxidizes into the cannabinoid CBL (cannabicyclol)(77B)
CBC as an anticonvulsant CBC has anticonvulsant properties at a low dose.(55B)
CBD
Cannabidiol


TRP receptors CBD interacts with: TRPA1, TRPV1, TRPV2, TRPV3, TRPM8 (2A,3A,4A,19A,54A)
CBD has many benefits including being an analgesic, anticonvulsant, muscle relaxant, anxiolytic, antipsychotic, neuroprotective, anti-inflammatory, and antioxidant activity.(37B)
Other actions of CBD: Suppression of Tryptophan Degradation,(32B) adenosine uptake competitive inhibitor,(22B) 5HT1A agonist,(3B) PPARy agonist,(10B) T-type calcium channel modulator,(7B) allosteric modulator of Mu and Delta opiate receptors,(91A) GPR55 inhibitor,(86A) CB2 inverse agonist, Phospholipase A2 Modulator.(70A)
CBD is a CB2 inverse agonist
CBD is a CB2 inverse agonist (70A) - Inverse agonists act like regular agonists in how they bind to receptors, but have the opposite pharmacological effect as a regular agonist.
CBD is an anticonvulsant and neuroprotectant
CBD acts as an anticonvulsant and neuroprotectant through calcium homeostasis in neuronal cells. CBD will cause a subtle increase of calcium in hippocampal cells under normal conditions. Under hyper excitability conditions, CBD reduced the calcium release, and prevented calcium oscillations. CBD regulates the calcium homeostasis in neurons by directing the mitochondria to either take in the extra calcium from the cytosol (known as a “sink”), or releasing extra calcium when needed (known as a “source”).(38B)
Vasodilation through calcitonin gene-related peptide (CGRP) release
CBD can release calcitonin gene-related peptide (CGRP) in a dose dependent manner from DRG neurons. This action is not from interacting with cannabinoid or TRPV1 receptors. CBD induced CGRP release is partially mediated from TRPV2 activation.(39B) CGRP is a highly potent vasodilator that is involved in the cardiovascular system and wound healing. It is known that CGRP antagonists can relieve migraines.(40B)
Does CBD cause migraines from CGRP release?
People will react to cannabinoids differently, but since CBD can affect other receptors and actions, the vasodilation effects of CGRP might be more regulated with small doses of CBD. Actual research will need to be done to assess the effects of different doses of CBD and migraines, especially how large doses of isolated CBD affect migraines. Also, the effects of CBD will be altered if using THC and certain terpenes that affect vasodilation or vasoconstriction. Some people with migraines could respond better to a Sativa THC strain, or a humulene rich strain that can be combined with CBD to keep the vasodilation to a minimum. Research so far typically says that CBD may help with migraines, leaving the questions still unanswered.
CBDA
Cannabidiolic acid


TRP receptors CBDA interacts with: TRPA1 partial agonist, TRPV1 agonist, TRPM8 antagonist(3A,19A)
Other actions of CBDA: COX-2 inhibitor(29B)
CBDA is unstable
CBDA will eventually decarboxylate into CBD over time.(51B) This will make it difficult to purchase CBDA, and people would need to grow this themselves to have a frequent fresh supply to utilize that cannabinoid. The easiest way to administer CBDA is to stuff dried CBDA buds into an empty capsule. Making tea by steeping the dried buds could work as well, but some of that resin will stick to the cup. Fresh leaves and buds can also work for tea making. Soaking the buds in some MCT oil is another option, but can make the cannabinoids prone to decarboxylation over time. I personally like the capsules, and I have a better effect with that method.
CBDA for obesity treatment
A study stabilized CBDA with CBDA-O-methyl ester (HU-580, EPM301) to prevent it from decarboxylating on its own. EPM301 at 40 mg/kg per day resulted in weight loss, increased ambulation, as well as improved glycemic and lipid profiles in diet-induced obese mice. EMP301 also prevented dietary induced hepatic dysfunction and steatosis. In preventative treatment, EPM301 inhibited weight gain and adiposity. That study did show that EMP301 reduced obesity and its metabolic abnormalities in both diet-induced obesity and genetic-induced obesity.(51B)
CBDA for Alzheimer’s Disease
CBDA was found to improve memory deficits, and reduce amyloid-beta and Tau pathology in mice with Alzheimer’s Disease.(50B)
CBDV
Cannabidivarin


TRP receptors CBDV interacts with: agonist and desensitizes TRPA1, TRPV1, and TRPV2(81B)
CBDV has anti-inflammatory, anti-nausea, anti-tumor, anti-convulsant, anxiolytic, and neuroprotective properties.(82B)
Antiseizure properties
CBDV has antiseizure properties. It was used in a Phase 2a placebo-controlled study for focal seizure but did not reach the primary endpoints back in February 2018. CBDV inhibits diacylglycerol (DAG) lipase-α, which is the enzyme responsible for synthesizing 2-arachidonoylglycerol (2-AG). The clinical significance of that inhibition is not known.(81B)
Rett Syndrome and Autism
CBDV was shown to reduce motor impairments and cognitive deficits in rats with Rett syndrome which has a degree of overlap with autism. The rat study used valproic acid prenatally to induce those neurological problems in the rats, and used CBDV to alleviate the symptoms. CBDV restores hippocampal endocannabinoid signaling and neuroinflammation induced by prenatal VPA exposure.(83B)
Duchenne muscular dystrophy (DMD)
CBD, CBDV, and THCV promoted myotube formation through TRPA1 activation. CBD and CBDV differentiation of murine C2C12 myoblast cells into myotubes by increasing calcium ions mainly through TRPV1 activation.(84B)
Compulsive behavior
Chronic CBDV administration in rats at a dose of 20 mg/kg normalized repetitive behavior.(83B) Human doses and trials will need to be done to show how this can help people with compulsive problems like OCD.
CBDV Strains
So far, strains high in CBDV are only available in autoflowering varieties. We will have to wait and see if photoperiod versions will become available in the future. These are some CBDV strains that are currently available that people can grow themselves.
Auto CBD-Victory by Dutch Passion Seeds
This autoflowering strain was created by Dutch Passion Seeds rated at 75% Sativa and 25% Indica. CBD and CBDV are both at 4-6% each, and THC is below 0.3%. The terpene profile is described as hints of wood, pine and a slight sweet vinegar taste. These plants take about 10 weeks to harvest under 20 hours of light per day (indoor grow).
Auto CBDV 1:1 by Seedsman
Seedsman genetics created this autoflowering 1:1 CBD:CBDV strain that takes 9-10 weeks to be ready to harvest indoors, and suitable for outdoor growing as well. The THC level is less than 0.3%. It is 75% Sativa and 25% Indica with the aroma of pine and tree resin (balsam).
Royal CBDV Automatic by Royal Queen Seeds
Created by Royal Queen Seeds, this strain has the parents of Solomatic CBD with Durban Poison with a rating of 75% sativa genetics, 20% indica, and 5% ruderalis. These plants produce 5%, CBD levels of 5%, and THC levels of 0.3%. They have earthy and piney terpenes, and take as little as 8 weeks to be ready for harvesting after germination.
CBDV Auto by Kannabia Seeds
CBDV Auto has a cannabinoid content of CBDV and THC is 25:1 with the THC less than 0.2%. They take about 63-70 days to be ready for harvesting, and have an earthy and spicy aroma, with hints of pepper.
Sedativa CBDV by Elite Seeds
Sedativa is a 50/50 hybrid with a fresh and floral aroma reminiscent of lavender and jasmine, and a cannabinoid content of CBDV:CBD 7:8 ratio, and a THC level below 0.5%.
CBG
Cannabigerol


TRP receptors that CBG interacts with: TRPA1 and TRPV1 agonist, TRPM8 antagonist.(70A)
Other actions of CBG: CB1 and CB2 partial agonist, Anandamide reuptake inhibitor, PhospholipaseA2 modulator/inhibitor,(70A,56B) Inhibits COX-1, COX-2 and 12/15-LOX.(56B)
CBG is found in cannabis and Helichrysum umbraculigerum.(70B) Common names for Helichrysum umbraculigerum include woolly umbrella helichrysum or umbrella everlasting in English, and kerriekruie in Afrikaans, which refers to its curry-like aroma.(71B,72B)
CBG has a role as an appetite enhancer, an anti-inflammatory agent, an antibacterial agent, a neuroprotective agent and an antioxidant. It is a phytocannabinoid and a member of resorcinols.(70B)
CBG for anxiety, psoriasis, gastric protection, and more
CBG reduces anxiety and stress and may enhance memory without intoxication, impairment, or subjective drug effects.(73B)
CBG is an inhibitor of cPLA2, COX-1, COX-2, and 12/15-LOX.(74B) CBG also protects against gastric mucositis,(56B) so the COX-1 inhibition would likely not cause any problems with the gastric mucosa from CBG’s protective benefits.
CBG reduces skin inflammation,(75B) which could be helpful against conditions like psoriasis, eczema, or dermatitis.
CBG for neurodegeneration
CBG inhibits amyloid β aggregation, making it a possible treatment for neurodegeneration like Alzheimer’s Disease.(56B)
CBG for SARS-CoV-2 (COVID) treatment
CBG and CBL (cannabicyclol) are both effective against the Covid virus with an EC(50) of cannabigerol at 5.5 µM and for cannabicyclol at 10.8 µM. They block SARS-CoV-2 Cell Fusion.(76B) CBL is formed when CBC oxidizes.(77B)
CBG for Pancreatic ductal adenocarcinoma (PDAC) Treatment
CBG is an effective anti-cancer treatment for the PANC-1 and MIAPaCa-2 cell lines of Pancreatic ductal adenocarcinoma (PDAC) through modulating EGFR-RAS-associated pathways.(78B)
Is CBG bad for pregnancy?
CBG and CBDV can negatively impact pregnancy by upregulating TRPV1 expression, which may lead to altered angiogenesis and an increased risk of pregnancy complications, such as intrauterine growth restriction and preeclampsia.(79B)
CBG strains
CBG strains are available in photoperiods that are included below. Some autoflowering versions are also available. It is possible that the clear trichomes would have more CBG than white trichomes, but that is not stated on any of the seed descriptions found online.
CBG-Force by Dutch Passion Seeds
CBG-Force is a photoperiod CBG strain with a THC percentage below 0.15%. This strain only takes about 7 weeks to be ready for harvesting. There is not a strong smell, or much terpenes in this strain.
CBG Zerodue by Seedstockers
CBG Zerodue is a cross between CBD Critical XXL and Italian Research Genetics. It can be expected to have THC levels below 0.2% and CBG levels as high as 9,18% and takes about 70 days to be ready for harvesting. This strain is a photoperiod.
Eboshi CBG by Medical Seeds
Eboshi CBG is a photoperiod that can reach up to 15% of CBG and both THC and CBD below 0.2%. It has the flavor and aroma of citric touches with fruity and wet earthy undertones.
CBG 1 by Seedsman
CBG 1 is a photoperiod with CBG levels are 16.9% while THC is at 0.25%. Flavours are tangy, from the terpene limonene, with berry notes, and takes about 12 weeks to be ready for harvesting.
Pure CBG by Philosopher Seeds
Pure CBG is a photoperiod with CBG levels of up to 12%, and a THC concentration below 0.3%. It takes about 55 days to be ready for harvesting, and has citric and sweet terpenes.
CBN
Cannabinol


TRP receptors that CBN interacts with: TRPA1 agonist, TRPM8 antagonist.(52B)
CBN is a CB1 and CB2 weak partial agonist.(70A)
Does CBN help with sleep?
A study showed that CBN at 10 mg/kg initially decreased REM sleep, but 4 hours after administration, REM was significantly increased. This could mean that CBN can reduce wake after sleep onset.(53B)
There was a clinical trial on the effectiveness of using CBN for sleep that was completed on 9-5-2023. This was a comparison of 30mg and 300mg of CBN. The results of that study are not available at the time of this writing (10-24-2024) which is over 1 year since the end of that study. We will need to wait until that is available at ClinicalTrials.gov ID NCT05344170.
CBN for pain relief
CBN inhibits voltage-dependent sodium (Nav1.7) channels and dorsal root ganglion (DRG) neurons, suggesting that CBN could be helpful in reducing neuropathic pain. Nav1.7 mutations are associated with painful disorders such as ophthalmic pain, and CBN could be useful in reducing that pain. CBN is slightly less potent in inhibiting Nav1.7 channels than either CBD or CBG.(52B)
CBN is an anti-inflammatory by inhibiting the NF-κB and NLRP3 inflammasome but works differently from THCV on specific pathways like STAT-3.(54B)
CBN for Neurodegeneration Treatment
CBN inhibits amyloid β aggregation, making it a possible treatment for neurodegeneration like Alzheimer’s Disease.(56B)
CBN has anticonvulsant properties at low doses.(55B)
How is CBN formed?

Research states that CBN is oxidized THC. CBN increases as THC degrades during storage.(70A) Marijuana growers tend to look at amber trichomes as a source of CBN. That can be achieved from letting the plant ripen longer before harvesting, and looking at the trichomes under magnification with a jewelers loupe. Amber trichomes also occur after water curing cannabis flowers. Water curing is soaking freshly harvested cannabis buds in water for 3-7 days, changing the water everyday. The image above is from a 3 day water cure of CBD Lemon Skunk. There is no lab testing available to show the conversion to CBN from water curing.
THC
Tetrahydrocannabinol


TRP Receptors THC interacts with: TRPA1 and TRPV2(2A,3A,4A,54A,19A)
Other actions of THC: Suppression of Tryptophan Degradation,(32B) PPARy agonist,(10B) T-type calcium channel indirect agonist,(7B) allosteric modulator of Mu and Delta opiate receptors,(91A) GPR55 agonist,(86A) Phospholipase A2 Modulator,(70A) CB1 and CB2 partial agonist.(41B)
Δ9-THC is the main psychoactive cannabinoid in the marijuana plant. It is commonly used for stimulating appetite to treat weight loss with patients with AIDS. It is also effective with reducing nausea and vomiting associated with chemotherapy cancer treatment.(41B)
Metabolites of Δ9-THC
11-Hydroxytetrahydrocannabinol (11-OH-THC)
This metabolite is often referred to as 11-hydroxy-THC. It is produced in the liver with the cytochrome CYP2C9 enzyme. It is mostly associated with the metabolism of the ingestion of THC edibles.(42B) 11-hydroxy-THC is several times more potent than Δ9-THC.(43B)
11-Nor-delta(9)-tetrahydrocannabinol-9-carboxylic acid (THC-COOH)
THC-COOH is the inactive metabolite that remains in the body for weeks, and is the target for drug testing.(42B)
Medication analog of THC
Marinol (Dronabinol) is a DEA Schedule 2 controlled substance that is a synthetic form of Δ9-THC. (41B)
Cognitive deficits from THC use
Chronic use of THC can lead to cognitive deficits, including: an impaired ability to focus attention and filter out irrelevant information.(44B) This impairment can persist for at least 7 days after stopping the use of THC, while some people could be affected for up to a month after they stopped THC use.(45B) It is possible that using enough CBD could prevent this cognitive impairment from the neuroprotective benefits of CBD, and how that cannabinoid modulates how THC acts on the CB1 receptor. The ratio of CBD to THC needed to prevent that might vary from person to person, and the type of terpenes being used. Chronic use of a-pinene strains would likely be more neuroprotective from that terpene acting as an acetylcholinesterase inhibitor. While decreased acetylcholine from linalool could have the opposite effect.
Delta 8 THC
Delta 8 THC is a CB1 agonist (44E)
Delta 8 THC has less research available compared to Delta 9 THC. It is less psychoactive than Delta 9 THC. The research so far shows that Delta 8 THC might have the benefits of being an antiemetic, anxiolytic, appetite-stimulating, analgesic, and neuroprotective activity.(46B)
Some adverse effects reported from Delta 8 THC include: hallucinations, vomiting, tremor, anxiety, dizziness, confusion, loss of consciousness, and even 1 pediatric death. Edibles like brownies and gummies infused with Delta 8 THC were responsible for 68% of the reported adverse effects.(47B)
THCA
Tetrahydrocannabiorcolic acid


TRP Receptors THCA interacts with: TRPA1 partial agonist, TRPV2 agonist, TRPM8 antagonist(3A19A)
Other actions of THCA: PPARy agonist(48B) Δ9-THCA activates PPARy stronger than THC.(49B)
THCA offers neuroprotection and is a possible treatment for Huntington’s Disease and Neurodegeneration
Δ9-THCA has potent neuroprotective effects through activating PPARγ, this improves mitochondrial function, prevents cytotoxicity, protects against striatal degeneration, and reduces neuroinflammation. These functions together suggest that Δ9-THCA could be a valuable treatment option for Huntington’s disease and other neurodegenerative conditions.(49B)
THCA was found to improve memory deficits, and reduce amyloid-beta and Tau pathology in mice with Alzheimer’s Disease.(50B)
THCA for TRPM8 Inhibition
THCA is more stable than CBDA during decarboxylation over time, making it a good option as a TRPM8 antagonist that is easy to obtain. Filling an empty capsule with dried cannabis flowers is an effective method of administering THCA. Grinding the buds first may expose the trichomes to oxidation, potentially converting some into CBN or triggering partial decarboxylation. From my experience, ground cannabis in a capsule feels more sedating compared to unground cannabis. Another option is to soak cannabis in MCT oil, but it will naturally decarboxylate over time. In my experience, the capsule method has been the best option for maintaining THCA content.
THCV
Tetrahydrocannabivarin

TRP receptors activated by THCV: TRPA1, TRPV1, TRPV2, TRPV3, TRPV4, and antagonizes TRPM8.(3A,19A,20A,21A)
Other receptors and actions: CB1 antagonist, CB2 partial agonist.(69A,70A,71A) Small doses of THCV acts as a CB1 antagonist, while large doses of THCV acts as a CB1 agonist.(57B)
Areas that THCV can influence through TRPV4 activation include cardiomyocytes, endothelial cells, smooth muscle cells, lung, chondrocytes, neurons, astrocytes, and sperm.(58B,59B,60B,61B,62B)
THCV activation of TRPV4 in the immune system
TRPV4 activation in macrophages are required for effective phagocytosis, and secreting anti-inflammatory cytokines. TRPV4 was found to protect the lung from injury after pneumonia from an infection with P. aeruginosa through MAPK signaling.(63B)
Can THCV cause breathing problems with COPD?
TRPV4 polymorphism is found with chronic obstructive pulmonary disease (COPD). TRPV4 agonists can cause bronchoconstriction, while TRPV4 antagonists will reverse that.(64B) There is a possibility that THCV could also cause airway constriction, particularly when smoked or inhaled, due to its possible TRPV4 agonism, which might exacerbate airway narrowing.
How can THCV act as a stimulant?
TRPV4 agonists increase the release of adenosine triphosphate (ATP).(64B) THCV’s potential to increase ATP release may contribute to its stimulant effects and potentially activate the sympathetic nervous system, leading to a stimulatory response.
Does THCV cause appetite suppression or an increase in appetite?
TRPV4 activation will increase the secretion of the hormone ghrelin. THCV is an agonist of TRPV4. That receptor is overexpressed in the stomachs of obese people, and an increase in ghrelin secretion occurs when the stomach is stretched.(65B)
THCV is a CB1 antagonist.(71A) When CB1 is activated with an agonist, appetite is increased. CB1 blockade with an antagonist decreases appetite.(66B) THCV is typically referred to as an appetite suppressant, but some people get hungry with THCV.
Does THCV cause palpitations?
TRPV4 is upregulated from conditions such as: cardiac fibrosis, hypertrophy, ischemia-reperfusion injuries, heart failure, myocardial infarction, arrhythmia,(58B) cystic fibrosis, ciliary beat frequency, bronchoconstriction, chronic obstructive pulmonary disease, pulmonary hypertension, acute lung injury, acute respiratory distress syndrome and cough.(59B)
If TRPV4 is overexpressed in the heart, then TRPV4 activation could increase the excitability of the heart muscle and contribute to palpitations. The additional ATP release from THCV's action could further amplify the stimulatory effects on the heart, increasing the possibility of palpitations.
THCV also activates TRPV3. TRPV3 activation can cause vasodilation that could contribute to palpitations through reflex tachycardia. TRPV3 activation also increases ATP release.(42A,43A)
How extra ATP can affect the heart
A study showed that a 68 year old patient had an ATP infusion for a diagnostic test. She had a tachycardia and a wide QRS complex. After the ATP was infused, she went into ventricular fibrillation probably because of sympathetic overdrive secondary to the ATP infusion.(67B) THCV will cause the release of ATP. (64B)
Does THCV cause bladder contractions or increased urination?
TRPV4 in the bladder is responsible for giving a full bladder sensation through the activation of those receptors from the stretching of the bladder.(68B) THCV activating TRPV4 in the bladder could give people that sensation that the bladder is full when it really is not, and even lead to bladder contractions.
THCV as an anti-inflammatory
THCV reduces inflammation by inhibiting NF-κB and cytokine production pathways, including P2X7 and NLRP3 inflammasome assembly. It also blocks pathways that contribute to cytokine storms (excessive inflammation).(69B)
THCV lowers blood sugar in type 2 diabetics
THCV can increase insulin sensitivity and decrease plasma glucose through increasing pancreatic b-cell activity, adiponectin, and Apo A concentrations. THCV was more effective at lowering blood sugar than CBD.(57B)
Type 1 diabetics might notice blood sugar being lowered more with THCV and insulin administered together compared to insulin without THCV due to an increase of adiponectin, and Apo A concentrations.
THCV for reducing panic
There is no research available to explain why THCV can reduce panic. It could be from the stimulant effects of THCV that desensitizes the nervous system to our body’s response to adrenaline secretion.
Does THCV cause anxiety?
There is no research available to explain why this can happen to some people. Since THCV acts as a stimulant, people that get anxiety from stimulants like caffeine or adrenaline spikes in the body would likely get anxiety from THCV.
Sources
1A. Alvarado MG, Thakore P, Earley S. Transient Receptor Potential Channel Ankyrin 1: A Unique Regulator of Vascular Function. Cells. 2021 May 11;10(5):1167. doi: 10.3390/cells10051167. PMID: 34064835; PMCID: PMC8151290.
2A. Watanabe H., Vriens J., Prenen J., Droogmans G., Voets T., Nillus B. (2003). Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424, 434–438. 10.1038/nature01807
3A. Muller C, Morales P, Reggio PH. Cannabinoid Ligands Targeting TRP Channels. Front Mol Neurosci. 2019 Jan 15;11:487. doi: 10.3389/fnmol.2018.00487. PMID: 30697147; PMCID: PMC6340993.
4A. De Petrocellis L., Orlando P., Moriello A. S., Aviello G., Stott C., Izzo A. A., et al.. (2012a). Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta Physiol. 204, 255–266. 10.1111/j.1748-1716.2011.02338.x
5A. Hu F, Song X, Long D. Transient receptor potential ankyrin 1 and calcium: Interactions and association with disease (Review). Exp Ther Med. 2021 Dec;22(6):1462. doi: 10.3892/etm.2021.10897. Epub 2021 Oct 20. PMID: 34737802; PMCID: PMC8561754.
6A. Cordero-Morales, J. F., Gracheva, E. O., & Julius, D. (2011). Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proceedings of the National Academy of Sciences, 108(46), E1184-E1191. https://doi.org/10.1073/pnas.1114124108
7A. Bang S, Kim KY, Yoo S, Kim YG, Hwang SW. Transient receptor potential A1 mediates acetaldehyde-evoked pain sensation. Eur J Neurosci. 2007 Nov;26(9):2516-23. doi: 10.1111/j.1460-9568.2007.05882.x. Epub 2007 Oct 23. PMID: 17970723.
8A. Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, Cravatt B, Corey DP, Patapoutian A. An ion channel essential for sensing chemical damage. J Neurosci. 2007 Oct 17;27(42):11412-5. doi: 10.1523/JNEUROSCI.3600-07.2007. PMID: 17942735; PMCID: PMC6673017.
9A. McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM. TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13525-30. doi: 10.1073/pnas.0705924104. Epub 2007 Aug 8. PMID: 17686976; PMCID: PMC1941642.
10A. Taylor-Clark TE, McAlexander MA, Nassenstein C, Sheardown SA, Wilson S, Thornton J, Carr MJ, Undem BJ. Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal. J Physiol. 2008 Jul 15;586(14):3447-59. doi: 10.1113/jphysiol.2008.153585. Epub 2008 May 22. PMID: 18499726; PMCID: PMC2538817.
11A. Andersson DA, Gentry C, Moss S, Bevan S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci. 2008 Mar 5;28(10):2485-94. doi: 10.1523/JNEUROSCI.5369-07.2008. PMID: 18322093; PMCID: PMC2709206.
12A. Hinman A, Chuang HH, Bautista DM, Julius D. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19564-8. doi: 10.1073/pnas.0609598103. Epub 2006 Dec 12. PMID: 17164327; PMCID: PMC1748265.
13A. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 2004 Mar 25;41(6):849-57. doi: 10.1016/s0896-6273(04)00150-3. PMID: 15046718.
14A. GeneCards. (n.d.).TRPA1 Gene - GeneCards | The Human Gene Database. Retrieved 9/26/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPA1&keywords=TRPA1
15A. Terada Y, Yamashita R, Ihara N, Yamazaki-Ito T, Takahashi Y, Masuda H, Sakuragawa S, Ito S, Ito K, Watanabe T. Human TRPA1 activation by terpenes derived from the essential oil of daidai, Citrus aurantium L. var. daidai Makino. Biosci Biotechnol Biochem. 2019 Sep;83(9):1721-1728. doi: 10.1080/09168451.2019.1611405. Epub 2019 May 10. PMID: 31072263.
16A. Molot J, Sears M, Anisman H. Multiple chemical sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev. 2023 Aug;151:105227. doi: 10.1016/j.neubiorev.2023.105227. Epub 2023 May 10. PMID: 37172924.
17A. Faris P, Rumolo A, Pellavio G, Tanzi M, Vismara M, Berra-Romani R, Gerbino A, Corallo S, Pedrazzoli P, Laforenza U, Montagna D, Moccia F. Transient receptor potential ankyrin 1 (TRPA1) mediates reactive oxygen species-induced Ca2+ entry, mitochondrial dysfunction, and caspase-3/7 activation in primary cultures of metastatic colorectal carcinoma cells. Cell Death Discov. 2023 Jul 1;9(1):213. doi: 10.1038/s41420-023-01530-x. PMID: 37393347; PMCID: PMC10314907.
18A. Zhai K, Liskova A, Kubatka P, Büsselberg D. Calcium Entry through TRPV1: A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells. Int J Mol Sci. 2020 Jun 11;21(11):4177. doi: 10.3390/ijms21114177. PMID: 32545311; PMCID: PMC7312732.
19A. De Petrocellis L., Ligresti A., Moriello A. S., Allarà M., Bisogno T., Petrosino S., et al.. (2011b). Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 163, 1479–1494. 10.1111/j.1476-5381.2010.01166.x
20A. Lowin T., Straub R. H. (2015). Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis. Arthritis Res. Ther. 17:226. 10.1186/s13075-015-0743-x
21A. Petrosino S., Schiano Moriello A., Cerrato S., Fusco M., Puigdemont A., De Petrocellis L., et al.. (2016). The anti-inflammatory mediator palmitoylethanolamide enhances the levels of 2-arachidonoyl-glycerol and potentiates its actions at TRPV1 cation channels. Br. J. Pharmacol. 173, 1154–1162. 10.1111/bph.13084
22A. Taylor-Clark TE, McAlexander MA, Nassenstein C, Sheardown SA, Wilson S, Thornton J, Carr MJ, Undem BJ. Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal. J Physiol. 2008 Jul 15;586(14):3447-59. doi: 10.1113/jphysiol.2008.153585. Epub 2008 May 22. PMID: 18499726; PMCID: PMC2538817.
23A. GeneCards. (n.d.).TRPV1 Gene - GeneCards | The Human Gene Database. Retrieved 9/26/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPV1
24A. Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V. TRPV1: A Potential Drug Target for Treating Various Diseases. Cells. 2014 May 23;3(2):517-45. doi: 10.3390/cells3020517. PMID: 24861977; PMCID: PMC4092862.
25A. Munjuluri S, Wilkerson DA, Sooch G, Chen X, White FA, Obukhov AG. Capsaicin and TRPV1 Channels in the Cardiovascular System: The Role of Inflammation. Cells. 2021 Dec 22;11(1):18. doi: 10.3390/cells11010018. PMID: 35011580; PMCID: PMC8750852.
26A. Omari SA, Adams MJ, Geraghty DP. TRPV1 Channels in Immune Cells and Hematological Malignancies. Adv Pharmacol. 2017;79:173-198. doi: 10.1016/bs.apha.2017.01.002. Epub 2017 Mar 21. PMID: 28528668.
27A. Chen K, Neu A, Howard AL, Földy C, Echegoyen J, Hilgenberg L, Smith M, Mackie K, Soltesz I. Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures. J Neurosci. 2007 Jan 3;27(1):46-58. doi: 10.1523/JNEUROSCI.3966-06.2007. PMID: 17202471; PMCID: PMC6672287.
28A. Gibson HE, Edwards JG, Page RS, Van Hook MJ, Kauer JA. TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron. 2008 Mar 13;57(5):746-59. doi: 10.1016/j.neuron.2007.12.027. PMID: 18341994; PMCID: PMC2698707.
29A. MalaCards. (n.d.) Pulpitis. Human Disease Database. Retrieved 9/26/2024 from https://www.malacards.org/card/pulpitis
30A. MalaCards. (n.d.) Cystinosis, Nephropathic. Human Disease Database. Retrieved 9/26/2024 from https://www.malacards.org/card/cystinosis_nephropathic
31A. GeneCards. (n.d.).TRPV1 Gene - GeneCards | The Human Gene Database. Retrieved 9/26/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPV1
32A. GeneCards. (n.d.).TRPV2 Gene - GeneCards | The Human Gene Database. Retrieved 10/08/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPV2#:~:text=GeneCards%20Summary%20for%20TRPV2%20Gene,Renal%20Pelvis%20Transitional%20Cell%20Carcinoma.
33A. Kojima I, Nagasawa M. TRPV2. Handb Exp Pharmacol. 2014;222:247-72. doi: 10.1007/978-3-642-54215-2_10. PMID: 24756709.
34A. Siveen KS, Nizamuddin PB, Uddin S, Al-Thani M, Frenneaux MP, Janahi IA, Steinhoff M, Azizi F. TRPV2: A Cancer Biomarker and Potential Therapeutic Target. Dis Markers. 2020 Dec 10;2020:8892312. doi: 10.1155/2020/8892312. PMID: 33376561; PMCID: PMC7746447.
35A. Santoni G, Farfariello V, Liberati S, Morelli MB, Nabissi M, Santoni M, Amantini C. The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses. Front Immunol. 2013 Feb 14;4:34. doi: 10.3389/fimmu.2013.00034. PMID: 23420671; PMCID: PMC3572502.
36A. Kalinovskii AP, Utkina LL, Korolkova YV, Andreev YA. TRPV3 Ion Channel: From Gene to Pharmacology. Int J Mol Sci. 2023 May 11;24(10):8601. doi: 10.3390/ijms24108601. PMID: 37239947; PMCID: PMC10218142.
37A. Su W, Qiao X, Wang W, He S, Liang K, Hong X. TRPV3: Structure, Diseases and Modulators. Molecules. 2023 Jan 12;28(2):774. doi: 10.3390/molecules28020774. PMID: 36677834; PMCID: PMC9865980.
38A. Sherkheli MA, Benecke H, Doerner JF, Kletke O, Vogt-Eisele AK, Gisselmann G, Hatt H. Monoterpenoids induce agonist-specific desensitization of transient receptor potential vanilloid-3 (TRPV3) ion channels. J Pharm Pharm Sci. 2009;12(1):116-28. doi: 10.18433/j37c7k. PMID: 19470296.
39A. Vogt-Eisele AK, Weber K, Sherkheli MA, Vielhaber G, Panten J, Gisselmann G, Hatt H. Monoterpenoid agonists of TRPV3. Br J Pharmacol. 2007 Jun;151(4):530-40. doi: 10.1038/sj.bjp.0707245. Epub 2007 Apr 10. PMID: 17420775; PMCID: PMC2013969.
40A. GeneCards. (n.d.).TRPV3 Gene - GeneCards | The Human Gene Database. Retrieved 9/26/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPV3&keywords=TRPV3
41A. Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci. 2006 May;9(5):628-35. doi: 10.1038/nn1692. Epub 2006 Apr 16. PMID: 16617338.
42A. Murphy TV, Kanagarajah A, Toemoe S, Bertrand PP, Grayson TH, Britton FC, Leader L, Senadheera S, Sandow SL. TRPV3 expression and vasodilator function in isolated uterine radial arteries from non-pregnant and pregnant rats. Vascul Pharmacol. 2016 Aug;83:66-77. doi: 10.1016/j.vph.2016.04.004. Epub 2016 Apr 9. PMID: 27073026.
43A. Martin LS, Josset-Lamaugarny A, El Jammal T, Ducreux S, Chevalier FP, Fromy B. Aging is associated with impaired triggering of TRPV3-mediated cutaneous vasodilation: a crucial process for local heat exposure. Geroscience. 2024 Aug;46(4):3567-3580. doi: 10.1007/s11357-023-00981-5. Epub 2023 Oct 19. PMID: 37855862; PMCID: PMC11226586.
44A. GeneCards. (n.d.).TRPV4 Gene - GeneCards | The Human Gene Database. Retrieved 10/09/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPV4
45A. Chaigne S, Barbeau S, Ducret T, Guinamard R, Benoist D. Pathophysiological Roles of the TRPV4 Channel in the Heart. Cells. 2023 Jun 17;12(12):1654. doi: 10.3390/cells12121654. PMID: 37371124; PMCID: PMC10296986.
46A. Baratchi S, Keov P, Darby WG, Lai A, Khoshmanesh K, Thurgood P, Vahidi P, Ejendal K, McIntyre P. The TRPV4 Agonist GSK1016790A Regulates the Membrane Expression of TRPV4 Channels. Front Pharmacol. 2019 Jan 23;10:6. doi: 10.3389/fphar.2019.00006. PMID: 30728775; PMCID: PMC6351496.
47A. Kumar H, Lim CS, Choi H, Joshi HP, Kim KT, Kim YH, Park CK, Kim HM, Han IB. Elevated TRPV4 Levels Contribute to Endothelial Damage and Scarring in Experimental Spinal Cord Injury. J Neurosci. 2020 Feb 26;40(9):1943-1955. doi: 10.1523/JNEUROSCI.2035-19.2020. Epub 2020 Jan 23. PMID: 31974206; PMCID: PMC7046444.
48A. Dunn KM, Hill-Eubanks DC, Liedtke WB, Nelson MT. TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6157-62. doi: 10.1073/pnas.1216514110. Epub 2013 Mar 25. PMID: 23530219; PMCID: PMC3625327.
49A. Liao J, Yang ST, Lu K, Lu Y, Wu YW, DU YM. [Oral administration of TRPV4 inhibitor improves atrial calcium handling abnormalities in sterile pericarditis rats]. Sheng Li Xue Bao. 2022 Apr 25;74(2):188-200. Chinese. PMID: 35503066.
50A. Liao J, Wu Q, Qian C, Zhao N, Zhao Z, Lu K, Zhang S, Dong Q, Chen L, Li Q, Du Y. TRPV4 blockade suppresses atrial fibrillation in sterile pericarditis rats. JCI Insight. 2020 Dec 3;5(23):e137528. doi: 10.1172/jci.insight.137528. PMID: 33119551; PMCID: PMC7714415.
51A. Everaerts W, Nilius B, Owsianik G. The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog Biophys Mol Biol. 2010 Sep;103(1):2-17. doi: 10.1016/j.pbiomolbio.2009.10.002. Epub 2009 Oct 14. PMID: 19835908.
52A. Darby WG, Grace MS, Baratchi S, McIntyre P. Modulation of TRPV4 by diverse mechanisms. Int J Biochem Cell Biol. 2016 Sep;78:217-228. doi: 10.1016/j.biocel.2016.07.012. Epub 2016 Jul 15. PMID: 27425399.
53A. Scheraga RG, Southern BD, Grove LM, Olman MA. The Role of TRPV4 in Regulating Innate Immune Cell Function in Lung Inflammation. Front Immunol. 2020 Jun 26;11:1211. doi: 10.3389/fimmu.2020.01211. PMID: 32676078; PMCID: PMC7333351.
54A. De Petrocellis L., Starowicz K., Moriello A. S., Vivese M., Orlando P., Di Marzo V. (2007). Regulation of transient receptor potential channels of melastatin type 8 (TRPM8): effect of cAMP, cannabinoid CB1 receptors and endovanilloids. Exp. Cell Res. 313, 1911–1920. 10.1016/j.yexcr.2007.01.008
55A. GeneCards. (n.d.).TRPM8 Gene - GeneCards | The Human Gene Database. Retrieved 10/09/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPM8
56A. Borrelli F, Pagano E, Romano B, Panzera S, Maiello F, Coppola D, De Petrocellis L, Buono L, Orlando P, Izzo AA. Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid. Carcinogenesis. 2014 Dec;35(12):2787-97. doi: 10.1093/carcin/bgu205. Epub 2014 Sep 30. PMID: 25269802
57A. Liu Y, Leng A, Li L, Yang B, Shen S, Chen H, Zhu E, Xu Q, Ma X, Shi P, Liu Y, Liu T, Li L, Li K, Zhang D, Xiao J. AMTB, a TRPM8 antagonist, suppresses growth and metastasis of osteosarcoma through repressing the TGFβ signaling pathway. Cell Death Dis. 2022 Mar 31;13(3):288. doi: 10.1038/s41419-022-04744-6. PMID: 35361751; PMCID: PMC8971393.
58A. Xu Q, Kong N, Zhang J, Bai N, Bi J, Li W. Expression of transient receptor potential cation channel subfamily M member 8 in gastric cancer and its clinical significance. Exp Ther Med. 2021 Apr;21(4):377. doi: 10.3892/ etm.2021.9808. Epub 2021 Feb 19. PMID: 33680099; PMCID: PMC7918222.
59A. Lan X, Zhao J, Song C, Yuan Q, Liu X. TRPM8 facilitates proliferation and immune evasion of esophageal cancer cells. Biosci Rep. 2019 Oct 30;39(10):BSR20191878. doi: 10.1042/BSR20191878. PMID: 31519770; PMCID: PMC6822499.
60A. Okamoto Y, Ohkubo T, Ikebe T, Yamazaki J. Blockade of TRPM8 activity reduces the invasion potential of oral squamous carcinoma cell lines. Int J Oncol. 2012 May;40(5):1431-40. doi: 10.3892/ijo.2012.1340. Epub 2012 Jan 20. PMID: 22267123.
61A. Mergler S, Derckx R, Reinach PS, Garreis F, Böhm A, Schmelzer L, Skosyrski S, Ramesh N, Abdelmessih S, Polat OK, Khajavi N, Riechardt AI. Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells. Cell Signal. 2014 Jan;26(1):56-69. doi: 10.1016/j.cellsig.2013.09.017. Epub 2013 Sep 29. PMID: 24084605.
62A. Kijpornyongpan T, Sereemaspun A, Chanchao C. Dose-dependent cytotoxic effects of menthol on human malignant melanoma A-375 cells: correlation with TRPM8 transcript expression. Asian Pac J Cancer Prev. 2014;15(4):1551-6. doi: 10.7314/apjcp.2014.15.4.1551. PMID: 24641366.
63A. Li Q, Wang X, Yang Z, Wang B, Li S. Menthol induces cell death via the TRPM8 channel in the human bladder cancer cell line T24. Oncology. 2009;77(6):335-41. doi: 10.1159/000264627. Epub 2009 Dec 2. PMID: 19955836.
64A. Klumpp D, Frank SC, Klumpp L, Sezgin EC, Eckert M, Edalat L, Bastmeyer M, Zips D, Ruth P, Huber SM. TRPM8 is required for survival and radioresistance of glioblastoma cells. Oncotarget. 2017 Sep 30;8(56):95896-95913. doi: 10.18632/oncotarget.21436. PMID: 29221175; PMCID: PMC5707069.
65A. Valero ML, Mello de Queiroz F, Stühmer W, Viana F, Pardo LA. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells. PLoS One. 2012;7(12):e51825. doi: 10.1371/journal.pone.0051825. Epub 2012 Dec 14. PMID: 23251635; PMCID: PMC3522609.
66A. Tsavaler L, Shapero MH, Morkowski S, Laus R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 2001 May 1;61(9):3760-9. PMID: 11325849.
67A. Fakih D, Baudouin C, Réaux-Le Goazigo A, Mélik Parsadaniantz S. TRPM8: A Therapeutic Target for Neuroinflammatory Symptoms Induced by Severe Dry Eye Disease. Int J Mol Sci. 2020 Nov 19;21(22):8756. doi: 10.3390/ ijms21228756. PMID: 33228217; PMCID: PMC7699525. https://www.ncbi.nlm.nih.gov/gene/79054 4/22/2024
68A. Hemida AS, Hammam MA, Heriz NAEM, Shehata WA. Expression of Transient Receptor Potential Channel of Melastatin number 8 (TRPM8) in Non- Melanoma Skin Cancer: A Clinical and Immunohistochemical study. J Immunoassay Immunochem. 2021 Nov 2;42(6):620-632. doi: 10.1080/15321819.2021.1918709. Epub 2021 Apr 25. PMID: 33896372.
69A. Reggio PH. Endocannabinoid binding to the cannabinoid receptors: what is known and what remains unknown. Curr Med Chem. 2010;17(14):1468-86. doi: 10.2174/092986710790980005. PMID: 20166921; PMCID: PMC4120766.
70A. Izzo, A. A., Borrelli, F., Capasso, R., Di Marzo, V., & Mechoulam, R. (2009). Non-psychotropic plant cannabinoids: New therapeutic opportunities from an ancient herb. Trends in Pharmacological Sciences, 30(10), 515- 527
71A. Morales P, Hurst DP, Reggio PH. Molecular Targets of the Phytocannabinoids: A Complex Picture. Prog Chem Org Nat Prod. 2017;103:103-131. doi: 10.1007/978-3-319-45541-9_4. PMID: 28120232; PMCID: PMC5345356.
72A. Jha NK, Sharma C, Hashiesh HM, Arunachalam S, Meeran MN, Javed H, Patil CR, Goyal SN, Ojha S. β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid can be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19. Front Pharmacol. 2021 May 14;12:590201. doi: 10.3389/fphar.2021.590201. PMID: 34054510; PMCID: PMC8163236.
73A. Udoh M, Santiago M, Devenish S, McGregor IS, Connor M. Cannabichromene is a cannabinoid CB2 receptor agonist. Br J Pharmacol. 2019 Dec;176(23):4537-4547. doi: 10.1111/bph.14815. Epub 2019 Nov 21. PMID: 31368508; PMCID: PMC6932936.
74A. GeneCards. (n.d.). CNR1 Gene - GeneCards | The Human Gene Database. Retrieved 10/10/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=CNR1&keywords=CB1
75A. GeneCards. (n.d.). CNR2 Gene - GeneCards | The Human Gene Database. Retrieved 10/10/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=CNR2&keywords=CB2
76A. Kaur R, Sidhu P, Singh S. What failed BIA 10-2474 Phase I clinical trial? Global speculations and recommendations for future Phase I trials. J Pharmacol Pharmacother. 2016 Jul-Sep;7(3):120-6. doi: 10.4103/0976-500X.189661. PMID: 27651707; PMCID: PMC5020770.
77A. Kaplan BL. The role of CB1 in immune modulation by cannabinoids. Pharmacol Ther. 2013 Mar;137(3):365-74. doi: 10.1016/j.pharmthera.2012.12.004. Epub 2012 Dec 20. PMID: 23261520.
78A. Aristizábal B, González Á. Innate immune system. In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A, et al., editors. Autoimmunity: From Bench to Bedside [Internet]. Bogota (Colombia): El Rosario University Press; 2013 Jul 18. Chapter 2. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459455/
79A. Gaffal E, Kemter AM, Scheu S, Leite Dantas R, Vogt J, Baune B, Tüting T, Zimmer A, Alferink J. Cannabinoid Receptor 2 Modulates Maturation of Dendritic Cells and Their Capacity to Induce Hapten-Induced Contact Hypersensitivity. Int J Mol Sci. 2020 Jan 11;21(2):475. doi: 10.3390/ijms21020475. PMID: 31940843; PMCID: PMC7013892.
80A. Galiègue S, Mary S, Marchand J, Dussossoy D, Carrière D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem. 1995 Aug 15;232(1):54-61. doi: 10.1111/j.1432-1033.1995.tb20780.x. PMID: 7556170.
81A. Tortora C, Di Paola A, Argenziano M, Creoli M, Marrapodi MM, Cenni S, Tolone C, Rossi F, Strisciuglio C. Effects of CB2 Receptor Modulation on Macrophage Polarization in Pediatric Celiac Disease. Biomedicines. 2022 Apr 9;10(4):874. doi: 10.3390/biomedicines10040874. PMID: 35453624; PMCID: PMC9029516.
82A. Alger BE. Getting high on the endocannabinoid system. Cerebrum. 2013 Nov 1;2013:14. PMID: 24765232; PMCID: PMC3997295.
83A. Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2699-704. doi: 10.1073/pnas.0711278105. Epub 2008 Feb 8. PMID: 18263732; PMCID: PMC2268199.
84A. Haley JE, Abogadie FC, Delmas P, Dayrell M, Vallis Y, Milligan G, Caulfield MP, Brown DA, Buckley NJ. The alpha subunit of Gq contributes to muscarinic inhibition of the M-type potassium current in sympathetic neurons. J Neurosci. 1998 Jun 15;18(12):4521-31. doi: 10.1523/JNEUROSCI.18-12-04521.1998. PMID: 9614229; PMCID: PMC6792692.
85A. Dennis SH, Pasqui F, Colvin EM, Sanger H, Mogg AJ, Felder CC, Broad LM, Fitzjohn SM, Isaac JT, Mellor JR. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus. Cereb Cortex. 2016 Jan;26(1):414-26. doi: 10.1093/cercor/bhv227. Epub 2015 Oct 15. PMID: 26472558; PMCID: PMC4677984.
86A. Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008 Jan;153(2):199-215. doi: 10.1038/sj.bjp.0707442. Epub 2007 Sep 10. PMID: 17828291; PMCID: PMC2219532.
87A. Stančić A, Jandl K, Hasenöhrl C, Reichmann F, Marsche G, Schuligoi R, Heinemann A, Storr M, Schicho R. The GPR55 antagonist CID16020046 protects against intestinal inflammation. Neurogastroenterol Motil. 2015 Oct;27(10):1432-45. doi: 10.1111/nmo.12639. Epub 2015 Jul 30. PMID: 26227635; PMCID: PMC4587547.
88A. Liu Q, Yu J, Li X, Guo Y, Sun T, Luo L, Ren J, Jiang W, Zhang R, Yang P, Yang Q. Cannabinoid receptor GPR55 activation blocks nicotine use disorder by regulation of AMPAR phosphorylation. Psychopharmacology (Berl). 2021 Nov;238(11):3335-3346. doi: 10.1007/s00213-021-05949-x. Epub 2021 Oct 14. PMID: 34648060.
89A. Patricio F, Morales Dávila E, Patricio-Martínez A, Arana Del Carmen N, Martínez I, Aguilera J, Perez-Aguilar JM, Limón ID. Intrapallidal injection of cannabidiol or a selective GPR55 antagonist decreases motor asymmetry and improves fine motor skills in hemiparkinsonian rats. Front Pharmacol. 2022 Sep 2;13:945836. doi: 10.3389/fphar.2022.945836. PMID: 36120297; PMCID: PMC9479130.
90A. Dhaliwal A, Gupta M. Physiology, Opioid Receptor. [Updated 2023 Jul 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK546642/
91A. Kathmann M, Flau K, Redmer A, Tränkle C, Schlicker E. Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors. Naunyn Schmiedebergs Arch Pharmacol. 2006 Feb;372(5):354-61. doi: 10.1007/s00210-006-0033-x. Epub 2006 Feb 18. PMID: 16489449.
92A. Theriot J, Sabir S, Azadfard M. Opioid Antagonists. [Updated 2023 Jul 21]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537079/
93A. Rao VS, Menezes AM, Viana GS. Effect of myrcene on nociception in mice. J Pharm Pharmacol. 1990
Dec;42(12):877-8. doi: 10.1111/j.2042-7158.1990.tb07046.x. PMID: 1983154.
94A. Jordan BA, Gomes I, Rios C, Filipovska J, Devi LA. Functional interactions between mu opioid and alpha 2A-adrenergic receptors. Mol Pharmacol. 2003 Dec;64(6):1317-24. doi: 10.1124/mol.64.6.1317. PMID: 14645661.
95A. Eason MG, Jacinto MT, Liggett SB. Contribution of ligand structure to activation of alpha 2-adrenergic receptor subtype coupling to Gs. Mol Pharmacol. 1994 Apr;45(4):696-702. PMID: 7910371.
96A. Niemi G, Breivik H. Adrenaline markedly improves thoracic epidural analgesia produced by a low-dose infusion of bupivacaine, fentanyl and adrenaline after major surgery. A randomised, double-blind, cross-over study with and without adrenaline. Acta Anaesthesiol Scand. 1998 Sep;42(8):897-909. doi: 10.1111/j.1399-6576.1998.tb05348.x. PMID: 9773133.
97A. Fujita W, Gomes I, Dove LS, Prohaska D, McIntyre G, Devi LA. Molecular characterization of eluxadoline as a potential ligand targeting mu-delta opioid receptor heteromers. Biochem Pharmacol. 2014 Dec 1;92(3):448-56. doi: 10.1016/j.bcp.2014.09.015. Epub 2014 Sep 28. PMID: 25261794; PMCID: PMC4769596.
98A. Kumar R, Viswanath O, Saadabadi A. Buprenorphine. [Updated 2024 Jun 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459126/
99A. Kopecky BJ, Liang R, Bao J. T-type calcium channel blockers as neuroprotective agents. Pflugers Arch. 2014 Apr;466(4):757-65. doi: 10.1007/s00424-014-1454-x. Epub 2014 Feb 25. PMID: 24563219; PMCID: PMC4005039.
1B. Huguenard JR. Block of T -Type Ca(2+) Channels Is an Important Action of Succinimide Antiabsence Drugs. Epilepsy Curr. 2002 Mar;2(2):49-52. doi: 10.1111/j.1535-7597.2002.00019.x. PMID: 15309165; PMCID: PMC320968.
2B. Powell KL, Cain SM, Snutch TP, O'Brien TJ. Low threshold T-type calcium channels as targets for novel epilepsy treatments. Br J Clin Pharmacol. 2014 May;77(5):729-39. doi: 10.1111/bcp.12205. PMID: 23834404; PMCID: PMC4004393.
3B. Ernst ME, Kelly MW. Mibefradil, a pharmacologically distinct calcium antagonist. Pharmacotherapy. 1998 May-Jun;18(3):463-85. PMID: 9620098.
4B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 60663, Mibefradil. Retrieved October 15, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Mibefradil.
5B. Chen H, Zhang D, Hua Ren J, Ping Chao S. Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes. Iran J Pharm Res. 2013 Fall;12(4):855-66. PMID: 24523765; PMCID: PMC3920693.
6B. Ge, W., & Ren, J. (2009). Combined L-/T-type calcium channel blockers: Ready for prime time. Hypertension, 53(4). https://doi.org/10.1161/HYPERTENSIONAHA.108.127548
7B. Ross HR, Napier I, Connor M. Inhibition of recombinant human T-type calcium channels by Delta9-tetrahydrocannabinol and cannabidiol. J Biol Chem. 2008 Jun 6;283(23):16124-34. doi: 10.1074/jbc.M707104200. Epub 2008 Apr 7. PMID: 18390906; PMCID: PMC3259625.
8B. Palee S, Chattipakorn S, Phrommintikul A, Chattipakorn N. PPARγ activator, rosiglitazone: Is it beneficial or harmful to the cardiovascular system? World J Cardiol. 2011 May 26;3(5):144-52. doi: 10.4330/wjc.v3.i5.144. PMID: 21666815; PMCID: PMC3110903.
9B. Singh G, Can AS, Correa R. Pioglitazone. [Updated 2023 Jul 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK544287/
10B. O'Sullivan SE, Sun Y, Bennett AJ, Randall MD, Kendall DA. Time-dependent vascular actions of cannabidiol in the rat aorta. Eur J Pharmacol. 2009 Jun 10;612(1-3):61-8. doi: 10.1016/j.ejphar.2009.03.010. Epub 2009 Mar 11. PMID: 19285060.
11B. Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011 Oct;2(4):236-40. doi: 10.4103/2231-4040.90879. PMID: 22247890; PMCID: PMC3255347.
12B. Stiedl O, Pappa E, Konradsson-Geuken Å, Ögren SO. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front Pharmacol. 2015 Aug 7;6:162. doi: 10.3389/fphar.2015.00162. PMID: 26300776; PMCID: PMC4528280.
13B. Resstel LB, Tavares RF, Lisboa SF, Joca SR, Corrêa FM, Guimarães FS. 5-HT1A receptors are involved in the cannabidiol-induced attenuation of behavioural and cardiovascular responses to acute restraint stress in rats. Br J Pharmacol. 2009 Jan;156(1):181-8. doi: 10.1111/j.1476-5381.2008.00046.x. PMID: 19133999; PMCID: PMC2697769.
14B. Banerjee P, Mehta M, Kanjilal B. The 5-HT1A Receptor: A Signaling Hub Linked to Emotional Balance. In: Chattopadhyay A, editor. Serotonin Receptors in Neurobiology. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. Chapter 7. Available from: https://www.ncbi.nlm.nih.gov/books/NBK5212/
15B. Schatzberg AF, Charles D. The Black Book of Psychotropic Dosing and Monitoring. Psychopharmacol Bull. 2018 Jan 15;48(1):64-153. PMID: 29382960; PMCID: PMC5765435.
16B. Montalbano A, Mlinar B, Bonfiglio F, Polenzani L, Magnani M, Corradetti R. Dual inhibitory action of trazodone on dorsal raphe serotonergic neurons through 5-HT1A receptor partial agonism and α1-adrenoceptor antagonism. PLoS One. 2019 Sep 26;14(9):e0222855. doi: 10.1371/journal.pone.0222855. PMID: 31557210; PMCID: PMC6763016.
17B. DrugBank. Serotonin 5HT1A antagonists. Retrieved 10/17/2024 from https://go.drugbank.com/categories/DBCAT005166.
18B. Celada P, Puig M, Amargós-Bosch M, Adell A, Artigas F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci. 2004 Jul;29(4):252-65. PMID: 15309042; PMCID: PMC446220.
19B. Chu A, Wadhwa R. Selective Serotonin Reuptake Inhibitors. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554406/
20B. Sabri MA, Saber-Ayad MM. MAO Inhibitors. [Updated 2023 Jun 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557395/
21B. Moraczewski J, Awosika AO, Aedma KK. Tricyclic Antidepressants. [Updated 2023 Aug 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557791/
22B. Carrier EJ, Auchampach JA, Hillard CJ. Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci U S A. 2006 May 16;103(20):7895-900. doi: 10.1073/pnas.0511232103. Epub 2006 May 3. PMID: 16672367; PMCID: PMC1472541.
23B. Martinez Naya N, Kelly J, Corna G, Golino M, Abbate A, Toldo S. Molecular and Cellular Mechanisms of Action of Cannabidiol. Molecules. 2023 Aug 9;28(16):5980. doi: 10.3390/molecules28165980. PMID: 37630232; PMCID: PMC10458707.
24B. Allahham M, Lerman A, Atar D, Birnbaum Y. Why Not Dipyridamole: a Review of Current Guidelines and Re-evaluation of Utility in the Modern Era. Cardiovasc Drugs Ther. 2022 Jun;36(3):525-532. doi: 10.1007/s10557-021-07224-9. Epub 2021 Jul 10. PMID: 34245446; PMCID: PMC8271326.
25B. Kerndt CC, Nagalli S. Dipyridamole. [Updated 2023 Jul 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554455/
26B. Wolska N, Rozalski M. Blood Platelet Adenosine Receptors as Potential Targets for Anti-Platelet Therapy. Int J Mol Sci. 2019 Nov 3;20(21):5475. doi: 10.3390/ijms20215475. PMID: 31684173; PMCID: PMC6862090.
27B. Lieu HD, Shryock JC, von Mering GO, Gordi T, Blackburn B, Olmsted AW, Belardinelli L, Kerensky RA. Regadenoson, a selective A2A adenosine receptor agonist, causes dose-dependent increases in coronary blood flow velocity in humans. J Nucl Cardiol. 2007 Jul;14(4):514-20. doi: 10.1016/j.nuclcard.2007.02.016. PMID: 17679059.
28B. Hauser RA, Hattori N, Fernandez H, Isaacson SH, Mochizuki H, Rascol O, Stocchi F, Li J, Mori A, Nakajima Y, Ristuccia R, LeWitt P. Efficacy of Istradefylline, an Adenosine A2A Receptor Antagonist, as Adjunctive Therapy to Levodopa in Parkinson's Disease: A Pooled Analysis of 8 Phase 2b/3 Trials. J Parkinsons Dis. 2021;11(4):1663-1675. doi: 10.3233/JPD-212672. PMID: 34486986; PMCID: PMC8609697.
29B. Takeda S, Misawa K, Yamamoto I, Watanabe K. Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis. Drug Metab Dispos. 2008 Sep;36(9):1917-21. doi: 10.1124/dmd.108.020909. Epub 2008 Jun 12. PMID: 18556441.
30B. Cohen B, Preuss CV. Celecoxib. [Updated 2024 Feb 28]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK535359/
31B. Ghlichloo I, Gerriets V. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547742/
32B. Jenny M, Santer E, Pirich E, Schennach H, Fuchs D. Delta9-tetrahydrocannabinol and cannabidiol modulate mitogen-induced tryptophan degradation and neopterin formation in peripheral blood mononuclear cells in vitro. J Neuroimmunol. 2009 Feb 15;207(1-2):75-82. doi: 10.1016/j.jneuroim.2008.12.004. Epub 2009 Jan 22. PMID: 19167098.
33B. Kałużna-Czaplińska J, Gątarek P, Chirumbolo S, Chartrand MS, Bjørklund G. How important is tryptophan in human health? Crit Rev Food Sci Nutr. 2019;59(1):72-88. doi: 10.1080/10408398.2017.1357534. Epub 2017 Sep 1. PMID: 28799778.
34B. Evans AT, Formukong E, Evans FJ. Activation of phospholipase A2 by cannabinoids. Lack of correlation with CNS effects. FEBS Lett. 1987 Jan 26;211(2):119-22. doi: 10.1016/0014-5793(87)81420-5. PMID: 3803591.
35B. Wang Q, Sun AY, Pardeike J, Müller RH, Simonyi A, Sun GY. Neuroprotective effects of a nanocrystal formulation of sPLA(2) inhibitor PX-18 in cerebral ischemia/reperfusion in gerbils. Brain Res. 2009 Aug 18;1285:188-95. doi: 10.1016/j.brainres.2009.06.022. Epub 2009 Jun 13. PMID: 19527696; PMCID: PMC2742555.
36B. Sun GY, Geng X, Teng T, Yang B, Appenteng MK, Greenlief CM, Lee JC. Dynamic Role of Phospholipases A2 in Health and Diseases in the Central Nervous System. Cells. 2021 Oct 30;10(11):2963. doi: 10.3390/cells10112963. PMID: 34831185; PMCID: PMC8616333.
37B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 644019, Cannabidiol. Retrieved October 19, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Cannabidiol.
38B. Ryan D, Drysdale AJ, Lafourcade C, Pertwee RG, Platt B. Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. J Neurosci. 2009 Feb 18;29(7):2053-63. doi: 10.1523/JNEUROSCI.4212-08.2009. PMID: 19228959; PMCID: PMC6666323.
39B. Qin N, Neeper MP, Liu Y, Hutchinson TL, Lubin ML, Flores CM. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci. 2008 Jun 11;28(24):6231-8. doi: 10.1523/JNEUROSCI.0504-08.2008. PMID: 18550765; PMCID: PMC6670541.
40B. Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014 Oct;94(4):1099-142. doi: 10.1152/physrev.00034.2013. PMID: 25287861; PMCID: PMC4187032.
41B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 16078, Dronabinol. Retrieved October 20, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Dronabinol.
42B. Kumar AR, Patilea-Vrana GI, Anoshchenko O, Unadkat JD. Characterizing and Quantifying Extrahepatic Metabolism of (-)-Δ9-Tetrahydrocannabinol (THC) and Its Psychoactive Metabolite, (±)-11-Hydroxy-Δ9-THC (11-OH-THC). Drug Metab Dispos. 2022 Jun;50(6):734-740. doi: 10.1124/dmd.122.000868. Epub 2022 Apr 3. PMID: 35370140; PMCID: PMC9199115.
43B. Indigent Defense Services. (2023). Marijuana impairment FAQ. New York Cannabis Control Board. https://cannabis.ny.gov/system/files/documents/2023/05/5.4.23_guide-to-cannabis-consumption.pdf
44B. Solowij N. Do cognitive impairments recover following cessation of cannabis use? Life Sci. 1995;56(23-24):2119-26. doi: 10.1016/0024-3205(95)00197-e. PMID: 7776840.
45B. Pope HG Jr, Gruber AJ, Hudson JI, Huestis MA, Yurgelun-Todd D. Neuropsychological performance in long-term cannabis users. Arch Gen Psychiatry. 2001 Oct;58(10):909-15. doi: 10.1001/archpsyc.58.10.909. PMID: 11576028.
46B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 638026, DELTA8-Tetrahydrocannabinol. Retrieved October 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/638026.
47B. U.S. Food and Drug Administration. (n.d.). 5 things to know about Delta-8 Tetrahydrocannabinol – Delta-8 THC. Retrieved July 22, 2024 from https://www.fda.gov/consumers/consumer-updates/5-things-know-about-delta-8-tetrahydrocannabinol-delta-8-thc
48B. Palomares B, Ruiz-Pino F, Garrido-Rodriguez M, Eugenia Prados M, Sánchez-Garrido MA, Velasco I, Vazquez MJ, Nadal X, Ferreiro-Vera C, Morrugares R, Appendino G, Calzado MA, Tena-Sempere M, Muñoz E. Tetrahydrocannabinolic acid A (THCA-A) reduces adiposity and prevents metabolic disease caused by diet-induced obesity. Biochem Pharmacol. 2020 Jan;171:113693. doi: 10.1016/j.bcp.2019.113693. Epub 2019 Nov 9. PMID: 31706843.
49B. Nadal X, Del Río C, Casano S, Palomares B, Ferreiro-Vera C, Navarrete C, Sánchez-Carnerero C, Cantarero I, Bellido ML, Meyer S, Morello G, Appendino G, Muñoz E. Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity. Br J Pharmacol. 2017 Dec;174(23):4263-4276. doi: 10.1111/bph.14019. Epub 2017 Nov 2. PMID: 28853159; PMCID: PMC5731255.
50B. Kim J, Choi P, Park YT, Kim T, Ham J, Kim JC. The Cannabinoids, CBDA and THCA, Rescue Memory Deficits and Reduce Amyloid-Beta and Tau Pathology in an Alzheimer's Disease-like Mouse Model. Int J Mol Sci. 2023 Apr 6;24(7):6827. doi: 10.3390/ijms24076827. PMID: 37047798; PMCID: PMC10095267.
51B. Ben-Cnaan E, Permyakova A, Azar S, Hirsch S, Baraghithy S, Hinden L, Tam J. The Metabolic Efficacy of a Cannabidiolic Acid (CBDA) Derivative in Treating Diet- and Genetic-Induced Obesity. Int J Mol Sci. 2022 May 17;23(10):5610. doi: 10.3390/ijms23105610. PMID: 35628417; PMCID: PMC9144717.
52B. Ghovanloo MR, Effraim PR, Tyagi S, Zhao P, Dib-Hajj SD, Waxman SG. Functionally-selective inhibition of threshold sodium currents and excitability in dorsal root ganglion neurons by cannabinol. Commun Biol. 2024 Jan 23;7(1):120. doi: 10.1038/s42003-024-05781-x. PMID: 38263462; PMCID: PMC10805714.
53B. Lavender I, McCartney D, Marshall N, Suraev A, Irwin C, D'Rozario AL, Gordon CJ, Saini B, Grunstein RR, Yee B, McGregor I, Hoyos CM. Cannabinol (CBN; 30 and 300 mg) effects on sleep and next-day function in insomnia disorder ('CUPID' study): protocol for a randomised, double-blind, placebo-controlled, cross-over, three-arm, proof-of-concept trial. BMJ Open. 2023 Aug 23;13(8):e071148. doi: 10.1136/bmjopen-2022-071148. PMID: 37612115; PMCID: PMC10450062.
54B. Gojani EG, Wang B, Li DP, Kovalchuk O, Kovalchuk I. Anti-Inflammatory Effects of Minor Cannabinoids CBC, THCV, and CBN in Human Macrophages. Molecules. 2023 Sep 7;28(18):6487. doi: 10.3390/molecules28186487. PMID: 37764262; PMCID: PMC10534668.
55B. Kollipara R, Langille E, Tobin C, French CR. Phytocannabinoids Reduce Seizures in Larval Zebrafish and Affect Endocannabinoid Gene Expression. Biomolecules. 2023 Sep 16;13(9):1398. doi: 10.3390/biom13091398. PMID: 37759798; PMCID: PMC10526363.
56B. Marsh DT, Sugiyama A, Imai Y, Kato R, Smid SD. The structurally diverse phytocannabinoids cannabichromene, cannabigerol and cannabinol significantly inhibit amyloid β-evoked neurotoxicity and changes in cell morphology in PC12 cells. Basic Clin Pharmacol Toxicol. 2024 Mar;134(3):293-309. doi: 10.1111/bcpt.13943. Epub 2023 Sep 25. PMID: 37697481.
57B. Abioye, A., Ayodele, O., Marinkovic, A. et al. Δ9-Tetrahydrocannabivarin (THCV): a commentary on potential therapeutic benefit for the management of obesity and diabetes. J Cannabis Res 2, 6 (2020). https://doi.org/10.1186/s42238-020-0016-7
58B. Chaigne S, Barbeau S, Ducret T, Guinamard R, Benoist D. Pathophysiological Roles of the TRPV4 Channel in the Heart. Cells. 2023 Jun 17;12(12):1654. doi: 10.3390/cells12121654. PMID: 37371124; PMCID: PMC10296986.
59B. Baratchi S, Keov P, Darby WG, Lai A, Khoshmanesh K, Thurgood P, Vahidi P, Ejendal K, McIntyre P. The TRPV4 Agonist GSK1016790A Regulates the Membrane Expression of TRPV4 Channels. Front Pharmacol. 2019 Jan 23;10:6. doi: 10.3389/fphar.2019.00006. PMID: 30728775; PMCID: PMC6351496.
60B. Kumar H, Lim CS, Choi H, Joshi HP, Kim KT, Kim YH, Park CK, Kim HM, Han IB. Elevated TRPV4 Levels Contribute to Endothelial Damage and Scarring in Experimental Spinal Cord Injury. J Neurosci. 2020 Feb 26;40(9):1943-1955. doi: 10.1523/JNEUROSCI.2035-19.2020. Epub 2020 Jan 23. PMID: 31974206; PMCID: PMC7046444.
61B. Kumar A, Majhi RK, Swain N, Giri SC, Kar S, Samanta L, Goswami C. TRPV4 is endogenously expressed in vertebrate spermatozoa and regulates intracellular calcium in human sperm. Biochem Biophys Res Commun. 2016 May 13;473(4):781-788. doi: 10.1016/j.bbrc.2016.03.071. Epub 2016 Mar 19. PMID: 27003252.
62B. Dunn KM, Hill-Eubanks DC, Liedtke WB, Nelson MT. TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6157-62. doi: 10.1073/pnas.1216514110. Epub 2013 Mar 25. PMID: 23530219; PMCID: PMC3625327.
63B. Scheraga RG, Southern BD, Grove LM, Olman MA. The Role of TRPV4 in Regulating Innate Immune Cell Function in Lung Inflammation. Front Immunol. 2020 Jun 26;11:1211. doi: 10.3389/fimmu.2020.01211. PMID: 32676078; PMCID: PMC7333351.
64B. Bonvini SJ, Birrell MA, Grace MS, Maher SA, Adcock JJ, Wortley MA, Dubuis E, Ching YM, Ford AP, Shala F, Miralpeix M, Tarrason G, Smith JA, Belvisi MG. Transient receptor potential cation channel, subfamily V, member 4 and airway sensory afferent activation: Role of adenosine triphosphate. J Allergy Clin Immunol. 2016 Jul;138(1):249-261.e12. doi: 10.1016/j.jaci.2015.10.044. Epub 2016 Jan 11. PMID: 26792207; PMCID: PMC4929136.
65B. Hayakawa S, Tanaka T, Ogawa R, Ito S, Ueno S, Koyama H, Tomotaka O, Sagawa H, Tanaka T, Iwakura H, Takahashi H, Matsuo Y, Mitsui A, Kimura M, Takahashi S, Takiguchi S. Potential Role of TRPV4 in Stretch-Induced Ghrelin Secretion and Obesity. Int J Endocrinol. 2022 Nov 8;2022:7241275. doi: 10.1155/2022/7241275. PMID: 36397882; PMCID: PMC9666045.
66B. Koch M. Cannabinoid Receptor Signaling in Central Regulation of Feeding Behavior: A Mini-Review. Front Neurosci. 2017 May 24;11:293. doi: 10.3389/fnins.2017.00293. PMID: 28596721; PMCID: PMC5442223.
67B. Miyoshi T, Nagai T, Inoue K, Ikeda S, Yamaguchi O. Adenosine triphosphate-induced life-threatening arrhythmia. J Cardiol Cases. 2023 Jun 1;28(4):150-152. doi: 10.1016/j.jccase.2023.05.011. PMID: 37818434; PMCID: PMC10562110.
68B. Janssen DA, Hoenderop JG, Heesakkers JP, Schalken JA. TRPV4 mediates afferent pathways in the urinary bladder. A spinal c-fos study showing TRPV1 related adaptations in the TRPV4 knockout mouse. Pflugers Arch. 2016 Oct;468(10):1741-9. doi: 10.1007/s00424-016-1859-9. Epub 2016 Aug 5. PMID: 27491796; PMCID: PMC5026715.
69B. Gojani EG, Wang B, Li DP, Kovalchuk O, Kovalchuk I. Anti-Inflammatory Effects of Minor Cannabinoids CBC, THCV, and CBN in Human Macrophages. Molecules. 2023 Sep 7;28(18):6487. doi: 10.3390/molecules28186487. PMID: 37764262; PMCID: PMC10534668.
70B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5315659, Cannabigerol. Retrieved October 25, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Cannabigerol.
71B. Rob’s Plants. (2017). Helichrysum umbraculigerum. Retrieved October 7, 2024, from http://www.robsplants.com/plantlinks/HelichrysumUmbraculigerum.htm​:contentReference[oaicite:0]{index=0}
72B. SANBI. (n.d.). Helichrysum umbraculigerum - PlantZAfrica.com. Retrieved October 7, 2024, from https://pza.sanbi.org/helichrysum-umbraculigerum​:contentReference[oaicite:1]{index=1}
73B. Cuttler C, Stueber A, Cooper ZD, Russo E. Acute effects of cannabigerol on anxiety, stress, and mood: a double-blind, placebo-controlled, crossover, field trial. Sci Rep. 2024 Jul 13;14(1):16163. doi: 10.1038/s41598-024-66879-0. PMID: 39003387; PMCID: PMC11246434.
74B. Sztolsztener K, Harasim-Symbor E, Chabowski A, Konstantynowicz-Nowicka K. Cannabigerol as an anti-inflammatory agent altering the level of arachidonic acid derivatives in the colon tissue of rats subjected to a high-fat high-sucrose diet. Biomed Pharmacother. 2024 Sep;178:117286. doi: 10.1016/j.biopha.2024.117286. Epub 2024 Aug 11. PMID: 39128189.
75B. Maiocchi A, Fumagalli M, Vismara M, Blanco A, Ciriello U, Paladino G, Piazza S, Martinelli G, Fasano V, Dell'Agli M, Passarella D. Minor Cannabinoids as Inhibitors of Skin Inflammation: Chemical Synthesis and Biological Evaluation. J Nat Prod. 2024 Jul 26;87(7):1725-1734. doi: 10.1021/acs.jnatprod.4c00212. Epub 2024 Jun 18. PMID: 38889235.
76B. Classen N, Pitakbut T, Schöfbänker M, Kühn J, Hrincius ER, Ludwig S, Hensel A, Kayser O. Cannabigerol and Cannabicyclol Block SARS-CoV-2 Cell Fusion. Planta Med. 2024 Aug;90(9):717-725. doi: 10.1055/a-2320-8822. Epub 2024 Jun 17. PMID: 38885660.
77B. GVB Biopharma. ND. What is Cannabicyclol (CBL)? Retrieved 10/25/2024 from https://www.gvbbiopharma.com/what-is-cannabicyclol-cbl/
78B. Zeppa L, Aguzzi C, Morelli MB, Marinelli O, Giangrossi M, Luongo M, Amantini C, Santoni G, Nabissi M. Cannabigerol Induces Autophagic Cell Death by Inhibiting EGFR-RAS Pathways in Human Pancreatic Ductal Adenocarcinoma Cell Lines. Int J Mol Sci. 2024 Feb 7;25(4):2001. doi: 10.3390/ijms25042001. PMID: 38396679; PMCID: PMC10888274.
79B. Alves P, Amaral C, Gonçalves MS, Teixeira N, Correia-da-Silva G. Cannabidivarin and cannabigerol induce unfolded protein response and angiogenesis dysregulation in placental trophoblast HTR-8/SVneo cells. Arch Toxicol. 2024 Sep;98(9):2971-2984. doi: 10.1007/s00204-024-03781-8. Epub 2024 May 15. PMID: 38748041; PMCID: PMC11324689.
80B. Santoni G, Farfariello V, Liberati S, Morelli MB, Nabissi M, Santoni M, Amantini C. The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses. Front Immunol. 2013 Feb 14;4:34. doi: 10.3389/fimmu.2013.00034. PMID: 23420671; PMCID: PMC3572502.
81B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 11601669, Cannabidivarin. Retrieved November 9, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Cannabidivarin.
82B. Voicu V, Brehar FM, Toader C, Covache-Busuioc RA, Corlatescu AD, Bordeianu A, Costin HP, Bratu BG, Glavan LA, Ciurea AV. Cannabinoids in Medicine: A Multifaceted Exploration of Types, Therapeutic Applications, and Emerging Opportunities in Neurodegenerative Diseases and Cancer Therapy. Biomolecules. 2023 Sep 14;13(9):1388. doi: 10.3390/biom13091388. PMID: 37759788; PMCID: PMC10526757.
83B. Zamberletti E, Gabaglio M, Woolley-Roberts M, Bingham S, Rubino T, Parolaro D. Cannabidivarin Treatment Ameliorates Autism-Like Behaviors and Restores Hippocampal Endocannabinoid System and Glia Alterations Induced by Prenatal Valproic Acid Exposure in Rats. Front Cell Neurosci. 2019 Aug 9;13:367. doi: 10.3389/fncel.2019.00367. PMID: 31447649; PMCID: PMC6696797.
84B. Iannotti FA, Pagano E, Moriello AS, Alvino FG, Sorrentino NC, D'Orsi L, Gazzerro E, Capasso R, De Leonibus E, De Petrocellis L, Di Marzo V. Effects of non-euphoric plant cannabinoids on muscle quality and performance of dystrophic mdx mice. Br J Pharmacol. 2019 May;176(10):1568-1584. doi: 10.1111/bph.14460. Epub 2018 Sep 9. PMID: 30074247; PMCID: PMC6487563.
85B. Ashenhurst, James. Stereochemistry and Chirality. Retrieved May 1, 2024 from https://www.masterorganicchemistry.com/2017/01/17/determining-rs-2-the-method-of-dots/
86B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 440917, Limonene, (+)-. Retrieved May 1, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/4R_-1-methyl-4-prop-1-en-2-ylcyclohexene.
87B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 439250, Limonene, (-)-. Retrieved May 1, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/4S_-1-methyl-4-prop-1-en-2-ylcyclohexene.
88B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 22311, Limonene, (+/-)-. Retrieved May 1, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Limonene.
89B. Park HM, Lee JH, Yaoyao J, Jun HJ, Lee SJ. Limonene, a natural cyclic terpene, is an agonistic ligand for adenosine A(2A) receptors. Biochem Biophys Res Commun. 2011 Jan 7;404(1):345-8. doi: 10.1016/j.bbrc.2010.11.121. Epub 2010 Dec 4. PMID: 21134357.
90B. Song Y, Seo S, Lamichhane S, Seo J, Hong JT, Cha HJ, Yun J. Limonene has anti-anxiety activity via adenosine A2A receptor-mediated regulation of dopaminergic and GABAergic neuronal function in the striatum. Phytomedicine. 2021 Mar;83:153474. doi: 10.1016/j.phymed.2021.153474. Epub 2021 Jan 21. PMID: 33548867.
91B. Mori A, Chen JF, Uchida S, Durlach C, King SM, Jenner P. The Pharmacological Potential of Adenosine A2A Receptor Antagonists for Treating Parkinson's Disease. Molecules. 2022 Apr 6;27(7):2366. doi: 10.3390/molecules27072366. PMID: 35408767; PMCID: PMC9000505.
92B. Raja K, Ramrakhia S, Dev K, Shahid W, Sohail H, Memon MK, Memon S. The Risk Factors for the Wearing-Off Phenomenon in Parkinson's Disease. Cureus. 2020 Sep 30;12(9):e10729. doi: 10.7759/cureus.10729. PMID: 33145134; PMCID: PMC7599057.
93B. Choi J, Horner KA. Dopamine Agonists. [Updated 2023 Jun 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551686/
94B. Rains CP, Bryson HM, Fitton A. Cabergoline. A review of its pharmacological properties and therapeutic potential in the treatment of hyperprolactinaemia and inhibition of lactation. Drugs. 1995 Feb;49(2):255-79. doi: 10.2165/00003495-199549020-00009. PMID: 7729332.
95B. Ozery M, Wadhwa R. Bromocriptine. [Updated 2022 Nov 23]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK555948/
96B. Gandhi KR, Saadabadi A. Levodopa (L-Dopa) [Updated 2023 Apr 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482140/
97B. Jia SS, Xi GP, Zhang M, Chen YB, Lei B, Dong XS, Yang YM. Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncol Rep. 2013 Jan;29(1):349-54. doi: 10.3892/or.2012.2093. Epub 2012 Oct 19. PMID: 23117412.
98B. Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999 Feb;6(2):99-104. doi: 10.1038/sj.cdd.4400476. PMID: 10200555.
99B. Avrutsky MI, Troy CM. Caspase-9: A Multimodal Therapeutic Target With Diverse Cellular Expression in Human Disease. Front Pharmacol. 2021 Jul 9;12:701301. doi: 10.3389/fphar.2021.701301. PMID: 34305609; PMCID: PMC8299054.
1C. Li P, Zhou L, Zhao T, Liu X, Zhang P, Liu Y, Zheng X, Li Q. Caspase-9: structure, mechanisms and clinical application. Oncotarget. 2017 Apr 4;8(14):23996-24008. doi: 10.18632/oncotarget.15098. PMID: 28177918; PMCID: PMC5410359.
2C. He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 2021 Dec 16;6(1):425. doi: 10.1038/s41392-021-00828-5. PMID: 34916492; PMCID: PMC8677728.
3C. Sarker D, Ang JE, Baird R, Kristeleit R, Shah K, Moreno V, Clarke PA, Raynaud FI, Levy G, Ware JA, Mazina K, Lin R, Wu J, Fredrickson J, Spoerke JM, Lackner MR, Yan Y, Friedman LS, Kaye SB, Derynck MK, Workman P, de Bono JS. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2015 Jan 1;21(1):77-86. doi: 10.1158/1078-0432.CCR-14-0947. Epub 2014 Nov 4. PMID: 25370471; PMCID: PMC4287394.
4C. Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D, Demanse D, De Buck SS, Ru QC, Peters M, Goldbrunner M, Baselga J. Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2012 Jan 20;30(3):282-90. doi: 10.1200/JCO.2011.36.1360. Epub 2011 Dec 12. PMID: 22162589.
5C. Miyazawa M, Yamafuji C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J Agric Food Chem. 2005 Mar 9;53(5):1765-8. doi: 10.1021/jf040019b. PMID: 15740071.
6C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 6654, alpha-PINENE. Retrieved November 17, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/alpha-PINENE.
7C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 440968, (-)-alpha-Pinene. Retrieved November 17, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/1S_-_-_-alpha-Pinene.
8C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 82227, (+)-alpha-Pinene. Retrieved November 17, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/1R_-_-alpha-Pinene.
9C. Perry NS, Houghton PJ, Theobald A, Jenner P, Perry EK. In-vitro inhibition of human erythrocyte acetylcholinesterase by salvia lavandulaefolia essential oil and constituent terpenes. J Pharm Pharmacol. 2000 Jul;52(7):895-902. doi: 10.1211/0022357001774598. Erratum in: J Pharm Pharmacol 2000 Dec;52(12):203. PMID: 10933142.
10C. Singh R, Sadiq NM. Cholinesterase Inhibitors. [Updated 2023 Jul 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK544336/
11C. Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013 May;11(3):315-35. doi: 10.2174/1570159X11311030006. PMID: 24179466; PMCID: PMC3648782.
12C. Khan-Mohammadi-Khorrami MK, Asle-Rousta M, Rahnema M, Amini R. Neuroprotective effect of alpha-pinene is mediated by suppression of the TNF-α/NF-κB pathway in Alzheimer's disease rat model. J Biochem Mol Toxicol. 2022 May;36(5):e23006. doi: 10.1002/jbt.23006. Epub 2022 Feb 17. PMID: 35174932.
13C. Gaweł S, Wardas M, Niedworok E, Wardas P. Dialdehyd malonowy (MDA) jako wskaźnik procesów peroksydacji lipidów w organizmie [Malondialdehyde (MDA) as a lipid peroxidation marker]. Wiad Lek. 2004;57(9-10):453-5. Polish. PMID: 15765761.
14C. Picón-Pagès P, Garcia-Buendia J, Muñoz FJ. Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis. 2019 Aug 1;1865(8):1949-1967. doi: 10.1016/j.bbadis.2018.11.007. Epub 2018 Nov 27. PMID: 30500433.
15C. Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem. 2009 Mar;390(3):191-214. doi: 10.1515/BC.2009.033. PMID: 19166318; PMCID: PMC2756154.
16C. Nandi A, Yan LJ, Jana CK, Das N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid Med Cell Longev. 2019 Nov 11;2019:9613090. doi: 10.1155/2019/9613090. PMID: 31827713; PMCID: PMC6885225.
17C. Góth L, Eaton JW. Hereditary catalase deficiencies and increased risk of diabetes. Lancet. 2000 Nov 25;356(9244):1820-1. doi: 10.1016/S0140-6736(00)03238-4. PMID: 11117918.
18C. Habib LK, Lee MT, Yang J. Inhibitors of catalase-amyloid interactions protect cells from beta-amyloid-induced oxidative stress and toxicity. J Biol Chem. 2010 Dec 10;285(50):38933-43. doi: 10.1074/jbc.M110.132860. Epub 2010 Oct 5. PMID: 20923778; PMCID: PMC2998107.
19C. National Library of Medicine. CHRNA7 cholinergic receptor nicotinic alpha 7 subunit [ Homo sapiens (human) ]. Retrieved on May 3, 2024 from https://www.ncbi.nlm.nih.gov/gene/1139
20C. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003 Jan 23;421(6921):384-8. doi: 10.1038/nature01339. Epub 2002 Dec 22. PMID: 12508119.
21C. Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015 Dec 10;11(6):1164-78. doi: 10.5114/aoms.2015.56342. Epub 2015 Dec 11. PMID: 26788077; PMCID: PMC4697050.
22C. Koo JW, Russo SJ, Ferguson D, Nestler EJ, Duman RS. Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2669-74. doi: 10.1073/pnas.0910658107. Epub 2010 Jan 26. PMID: 20133768; PMCID: PMC2823860.
23C. Golan H, Levav T, Mendelsohn A, Huleihel M. Involvement of tumor necrosis factor alpha in hippocampal development and function. Cereb Cortex. 2004 Jan;14(1):97-105. doi: 10.1093/cercor/bhg108. PMID: 14654461.
24C. Aloe L, Rocco ML, Balzamino BO, Micera A. Nerve Growth Factor: A Focus on Neuroscience and Therapy. Curr Neuropharmacol. 2015;13(3):294-303. doi: 10.2174/1570159x13666150403231920. PMID: 26411962; PMCID: PMC4812798.
25C. Ji J, Maren S. Differential roles for hippocampal areas CA1 and CA3 in the contextual encoding and retrieval of extinguished fear. Learn Mem. 2008 Apr 3;15(4):244-51. doi: 10.1101/lm.794808. PMID: 18391185; PMCID: PMC2327266.
26C. Varsity Tutors. (n.d.). Biological and cognitive factors. Varsity Tutors. Retrieved 5/23/2024, from https://www.varsitytutors.com/ap_psychology-help/biological-and-cognitive-factors#:~:text=Context%2Ddependent%20memory%20is%20a,where%20you%20learned%20that%20information!
27C. Veerasammy S, Van Steenwinckel J, Le Charpentier T, Seo JH, Fleiss B, Gressens P, Levison SW. Perinatal IL-1β-induced inflammation suppresses Tbr2+ intermediate progenitor cell proliferation in the developing hippocampus accompanied by long-term behavioral deficits. Brain Behav Immun Health. 2020 Jul 17;7:100106. doi: 10.1016/j.bbih.2020.100106. PMID: 34589867; PMCID: PMC8474668.
28C. Marsland AL, Gianaros PJ, Abramowitch SM, Manuck SB, Hariri AR. Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiatry. 2008 Sep 15;64(6):484-90. doi: 10.1016/j.biopsych.2008.04.016. Epub 2008 Jun 2. PMID: 18514163; PMCID: PMC2562462.
29C. Gruol DL. IL-6 regulation of synaptic function in the CNS. Neuropharmacology. 2015 Sep;96(Pt A):42-54. doi: 10.1016/j.neuropharm.2014.10.023. Epub 2014 Nov 22. PMID: 25445486; PMCID: PMC4446251.
30C. Gao C, Gill MB, Tronson NC, Guedea AL, Guzmán YF, Huh KH, Corcoran KA, Swanson GT, Radulovic J. Hippocampal NMDA receptor subunits differentially regulate fear memory formation and neuronal signal propagation. Hippocampus. 2010 Sep;20(9):1072-82. doi: 10.1002/hipo.20705. PMID: 19806658; PMCID: PMC2891656.
31C. Medina JH, Viola H. ERK1/2: A Key Cellular Component for the Formation, Retrieval, Reconsolidation and Persistence of Memory. Front Mol Neurosci. 2018 Oct 5;11:361. doi: 10.3389/fnmol.2018.00361. PMID: 30344477; PMCID: PMC6182090.
32C. Aida T, Ito Y, Takahashi YK, Tanaka K. Overstimulation of NMDA receptors impairs early brain development in vivo. PLoS One. 2012;7(5):e36853. doi: 10.1371/journal.pone.0036853. Epub 2012 May 11. PMID: 22606296; PMCID: PMC3350466.
33C. Blanke ML, VanDongen AMJ. Activation Mechanisms of the NMDA Receptor. In: Van Dongen AM, editor. Biology of the NMDA Receptor. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 13. Available from: https://www.ncbi.nlm.nih.gov/books/NBK5274/
34C. Moss DE. Is Combining an Anticholinergic with a Cholinesterase Inhibitor a Good Strategy for High-Level CNS Cholinesterase Inhibition? J Alzheimers Dis. 2019;71(4):1099-1103. doi: 10.3233/JAD-190626. PMID: 31476160; PMCID: PMC6839449.
35C. Ghossein N, Kang M, Lakhkar AD. Anticholinergic Medications. [Updated 2023 May 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK555893/
36C. GoodRx. (n.d.). Donepezil interactions. Retrieved 9/17/2024, from https://www.goodrx.com/donepezil/interactions
37C. Gust C, Pugliese N, Stern G. Suspected donepezil toxicity: A case report. Clin Case Rep. 2020 Sep 3;8(12):2818-2823. doi: 10.1002/ccr3.3245. PMID: 33363829; PMCID: PMC7752397.
38C. Adeyinka A, Kondamudi NP. Cholinergic Crisis. 2023 Aug 12. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 29494040.
39C. Vogel SM, Mican LM, Smith TL. Donepezil-induced QTc prolongation: A case report. Ment Health Clin. 2019 May 10;9(3):128-132. doi: 10.9740/mhc.2019.05.128. PMID: 31123660; PMCID: PMC6513057.
40C. Farzam K, Tivakaran VS. QT Prolonging Drugs. [Updated 2023 Jul 2]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534864/
41C. Kumar A, Gupta V, Sharma S. Donepezil. [Updated 2023 Aug 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513257/
42C. Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: Targeting the Cholinergic System. Curr Neuropharmacol. 2016;14(1):101-15. doi:10.2174/1570159x13666150716165726. PMID: 26813123; PMCID: PMC4787279.
43C. Migirov A, Datta AR. Physiology, Anticholinergic Reaction. [Updated 2023 Jul 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK546589/
44C. Sheppard D, Epstein J, Holtzman MJ, Nadel JA, Boushey HA. Dose-dependent inhibition of cold air-induced bronchoconstriction by atropine. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jul;53(1):169-74. doi: 10.1152/jappl.1982.53.1.169. PMID: 6749773.
45C. Masurkar PP, Chatterjee S, Sherer JT, Chen H, Johnson ML, Aparasu RR. Risk of overactive bladder associated with cholinesterase inhibitors in dementia. J Am Geriatr Soc. 2022 Mar;70(3):820-830. doi: 10.1111/jgs.17579. Epub 2021 Dec 2. PMID: 34854475.
46C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 14896, beta-Pinene. Retrieved May 30, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/beta-Pinene.
47C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 10290825, (+)-beta-Pinene. Retrieved May 30, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/10290825.
48C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 440967, (-)-beta-Pinene. Retrieved May 30, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/nopinene.
49C. Salehi B, Upadhyay S, Erdogan Orhan I, Kumar Jugran A, L D Jayaweera S, A Dias D, Sharopov F, Taheri Y, Martins N, Baghalpour N, Cho WC, Sharifi-Rad J. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules. 2019 Nov 14;9(11):738. doi: 10.3390/biom9110738. PMID: 31739596; PMCID: PMC6920849.
50C. Zhou JY, Tang FD, Mao GG, Bian RL. Effect of alpha-pinene on nuclear translocation of NF-kappa B in THP-1 cells. Acta Pharmacol Sin. 2004 Apr;25(4):480-4. PMID: 15066217.
51C. Alma MH, Nitz S, Kollmannsberger H, Digrak M, Efe FT, Yilmaz N. Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish pistachio (Pistacia vera L.). J Agric Food Chem. 2004 Jun 16;52(12):3911-4. doi: 10.1021/jf040014e. PMID: 15186116.
52C. Miyazawa M, Yamafuji C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J Agric Food Chem. 2005 Mar 9;53(5):1765-8. doi: 10.1021/jf040019b. PMID: 15740071.
53C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 26049, 3-Carene. Retrieved November 20, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/3-Carene.
54C. Jeong JG, Kim YS, Min YK, Kim SH. Low concentration of 3-carene stimulates the differentiation of mouse osteoblastic MC3T3-E1 subclone 4 cells. Phytother Res. 2008 Jan;22(1):18-22. doi: 10.1002/ptr.2247. PMID: 17685387.
55C. Re L, Barocci S, Sonnino S, Mencarelli A, Vivani C, Paolucci G, Scarpantonio A, Rinaldi L, Mosca E. Linalool modifies the nicotinic receptor-ion channel kinetics at the mouse neuromuscular junction. Pharmacol Res. 2000 Aug;42(2):177-82. doi: 10.1006/phrs.2000.0671. PMID: 10887049.
56C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 443158, Linalool, (-)-. Retrieved May 30, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/3R_-3_7-dimethylocta-1_6-dien-3-ol
58C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 67179, Linalool, (+)-. Retrieved May 30, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/3S_-3_7-dimethylocta-1_6-dien-3-ol
59C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 6549, Linalool, (+/-)-. Retrieved May 30, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Linalool
60C. Aelenei P, Rimbu CM, Guguianu E, Dimitriu G, Aprotosoaie AC, Brebu M, Horhogea CE, Miron A. Coriander essential oil and linalool - interactions with antibiotics against Gram-positive and Gram-negative bacteria. Lett Appl Microbiol. 2019 Feb;68(2):156-164. doi: 10.1111/lam.13100. Epub 2019 Jan 4. PMID: 30471142.
61C. Al-Khayri JM, Banadka A, Nandhini M, Nagella P, Al-Mssallem MQ, Alessa FM. Essential Oil from Coriandrum sativum: A review on Its Phytochemistry and Biological Activity. Molecules. 2023 Jan 10;28(2):696. doi: 10.3390/molecules28020696. PMID: 36677754; PMCID: PMC9864992.
62C. Li Y, Lv O, Zhou F, Li Q, Wu Z, Zheng Y. Linalool Inhibits LPS-Induced Inflammation in BV2 Microglia Cells by Activating Nrf2. Neurochem Res. 2015 Jul;40(7):1520-5. doi: 10.1007/s11064-015-1629-7. Epub 2015 Jun 4. PMID: 26040565.
63C. Del Prado-Audelo ML, Cortés H, Caballero-Florán IH, González-Torres M, Escutia-Guadarrama L, Bernal-Chávez SA, Giraldo-Gomez DM, Magaña JJ, Leyva-Gómez G. Therapeutic Applications of Terpenes on Inflammatory Diseases. Front Pharmacol. 2021 Aug 13;12:704197. doi: 10.3389/fphar.2021.704197. PMID: 34483907; PMCID: PMC8414653.
64C. Re L, Barocci S, Sonnino S, Mencarelli A, Vivani C, Paolucci G, Scarpantonio A, Rinaldi L, Mosca E. Linalool modifies the nicotinic receptor-ion channel kinetics at the mouse neuromuscular junction. Pharmacol Res. 2000 Aug;42(2):177-82. doi: 10.1006/phrs.2000.0671. PMID: 10887049.
65C. Kumar A, Gupta V, Sharma S. Donepezil. [Updated 2023 Aug 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513257/
66C. National Institute of Neurological Disorders and Stroke. Parkinson's Disease. Retreived 9/24/2024 from https://www.ninds.nih.gov/health-information/disorders/parkinsons-disease
67C. Dutra FL, Oliveira MM, Santos RS, Silva WS, Alviano DS, Vieira DP, Lopes AH. Effects of linalool and eugenol on the survival of Leishmania (L.) infantum chagasi within macrophages. Acta Trop. 2016 Dec;164:69-76. doi: 10.1016/j.actatropica.2016.08.026. Epub 2016 Aug 30. PMID: 27591136.
68C. Jansen C, Shimoda LMN, Kawakami JK, Ang L, Bacani AJ, Baker JD, Badowski C, Speck M, Stokes AJ, Small-Howard AL, Turner H. Myrcene and terpene regulation of TRPV1. Channels (Austin). 2019 Dec;13(1):344-366. doi: 10.1080/19336950.2019.1654347. PMID: 31446830; PMCID: PMC6768052.
69C. Rao VS, Menezes AM, Viana GS. Effect of myrcene on nociception in mice. J Pharm Pharmacol. 1990 Dec;42(12):877-8. doi: 10.1111/j.2042-7158.1990.tb07046.x. PMID: 1983154.
70C. Jordan BA, Gomes I, Rios C, Filipovska J, Devi LA. Functional interactions between mu opioid and alpha 2A-adrenergic receptors. Mol Pharmacol. 2003 Dec;64(6):1317-24. doi: 10.1124/mol.64.6.1317. PMID: 14645661.
71C. Eason MG, Jacinto MT, Liggett SB. Contribution of ligand structure to activation of alpha 2-adrenergic receptor subtype coupling to Gs. Mol Pharmacol. 1994 Apr;45(4):696-702. PMID: 7910371.
72C. Niemi G, Breivik H. Adrenaline markedly improves thoracic epidural analgesia produced by a low-dose infusion of bupivacaine, fentanyl and adrenaline after major surgery. A randomised, double-blind, cross-over study with and without adrenaline. Acta Anaesthesiol Scand. 1998 Sep;42(8):897-909. doi: 10.1111/j.1399-6576.1998.tb05348.x. PMID: 9773133.
73C. De-Oliveira AC, Ribeiro-Pinto LF, Paumgartten JR. In vitro inhibition of CYP2B1 monooxygenase by beta-myrcene and other monoterpenoid compounds. Toxicol Lett. 1997 Jun 16;92(1):39-46. doi: 10.1016/s0378-4274(97)00034-9. PMID: 9242356.
74C. Lorenzetti BB, Souza GE, Sarti SJ, Santos Filho D, Ferreira SH. Myrcene mimics the peripheral analgesic activity of lemongrass tea. J Ethnopharmacol. 1991 Aug;34(1):43-8. doi: 10.1016/0378-8741(91)90187-i. PMID: 1753786.
75C. Samuelsson B, Morgenstern R, Jakobsson PJ. Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev. 2007 Sep;59(3):207-24. doi: 10.1124/pr.59.3.1. PMID: 17878511.
76C. National Toxicology Program. NTP technical report on the toxicology and carcinogenesis studies of beta-myrcene (CAS No. 123-35-3) in F344/N rats and B6C3F1 mice (Gavage studies). Natl Toxicol Program Tech Rep Ser. 2010 Dec;(557):1-163. PMID: 21415873.
77C. do Vale TG, Furtado EC, Santos JG Jr, Viana GS. Central effects of citral, myrcene and limonene, constituents of essential oil chemotypes from Lippia alba (Mill.) n.e. Brown. Phytomedicine. 2002 Dec;9(8):709-14. doi: 10.1078/094471102321621304. PMID: 12587690.
78C. da-Silva VA, de-Freitas JC, Mattos AP, Paiva-Gouvea W, Presgrave OA, Fingola FF, Menezes MA, Paumgartten FJ. Neurobehavioral study of the effect of beta-myrcene on rodents. Braz J Med Biol Res. 1991;24(8):827-31. PMID: 1797273.
79C. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016 Mar;7(2):27-31. doi: 10.4103/0976-0105.177703. PMID: 27057123; PMCID: PMC4804402.
80C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5281515, Caryophyllene. Retrieved June 12, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Caryophyllene.
81C. Gertsch, J., Leonti, M., Raduner, S., Racz, I., Chen, J. Z., Xie, X. Q., Altmann, K. H., Karsak, M., & Zimmer, A. (2008). Beta-caryophyllene is a dietary cannabinoid. Proceedings of the National Academy of Sciences, 105(26), 9099–9104. https://doi.org/10.1073/pnas.0803601105
82C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 20831623, (+)-beta-Caryophyllene. Retrieved June 12, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/be ta-Caryophyllene.
83C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5281522, Isocaryophyllene. Retrieved June 12, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Isocaryophyllene.
84C. Russo, Ethan. “Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects”. British Journal of Pharmacology. 29 December 2010
85C. Basile AC, Sertié JA, Freitas PC, Zanini AC. Anti-inflammatory activity of oleoresin from Brazilian Copaifera. J Ethnopharmacol. 1988 Jan;22(1):101-9. doi: 10.1016/0378-8741(88)90235-8. PMID: 3352280.
86C. Herrero-Jáuregui C, Casado MA, das Graças Bichara Zoghbi M, Célia Martins-da-Silva R. Chemical variability of Copaifera reticulata Ducke oleoresin. Chem Biodivers. 2011 Apr;8(4):674-85. doi: 10.1002/cbdv.201000258. PMID: 21480513.
87C. Legault J, Pichette A. Potentiating effect of beta-caryophyllene on anticancer activity of alpha-humulene, isocaryophyllene and paclitaxel.
88C. National Cancer institute. (n.d.) Paclitaxel. Retrieved 6/11/2024 from https://www.cancer.gov/about-cancer/treatment/drugs/paclitaxel
89C. Xi ZX, Peng XQ, Li X, Song R, Zhang HY, Liu QR, Yang HJ, Bi GH, Li J, Gardner EL. Brain cannabinoid CB₂ receptors modulate cocaine's actions in mice. Nat Neurosci. 2011 Jul 24;14(9):1160-6. doi: 10.1038/nn.2874. PMID: 21785434; PMCID: PMC3164946.
90C. Karsak M, Gaffal E, Date R, Wang-Eckhardt L, Rehnelt J, Petrosino S, Starowicz K, Steuder R, Schlicker E, Cravatt B, Mechoulam R, Buettner R, Werner S, Di Marzo V, Tüting T, Zimmer A. Attenuation of allergic contact dermatitis through the endocannabinoid system. Science. 2007 Jun 8;316(5830):1494-7. doi: 10.1126/science.1142265. PMID: 17556587.
91C. Li, L., Liu, X., Ge, W., Chen, C., Huang, Y., Jin, Z., Zhan, M., Duan, X., Liu, X., Kong, Y., Jiang, J., Li, X., Zeng, X., Li, F., Xu, S., Li, M., & Chen, H. (2022). CB2R deficiency exacerbates imiquimod-induced psoriasiform dermatitis and itch through the neuro-immune pathway. Pain Research Forum. Retrieved from https://www.iasp-pain.org/publications/pain-research-forum/papers-of-the-week/paper/190456-cb2r-deficiency-exacerbates-imiquimod-induced-psoriasiform-dermatitis-and-itch-through/
92C. Schlosburg JE, O'Neal ST, Conrad DH, Lichtman AH. CB1 receptors mediate rimonabant-induced pruritic responses in mice: investigation of locus of action. Psychopharmacology (Berl). 2011 Aug;216(3):323-31. doi: 10.1007/s00213-011-2224-5. Epub 2011 Feb 22. PMID: 21340468; PMCID: PMC3606913.
93C. Avila C, Massick S, Kaffenberger BH, Kwatra SG, Bechtel M. Cannabinoids for the treatment of chronic pruritus: A review. J Am Acad Dermatol. 2020 May;82(5):1205-1212. doi: 10.1016/j.jaad.2020.01.036. Epub 2020 Jan 25. PMID: 31987788.
94C. Campbell WE, Gammon DW, Smith P, Abrahams M, Purves TD. Composition and antimalarial activity in vitro of the essential oil of Tetradenia riparia. Planta Med. 1997 Jun;63(3):270-2. doi: 10.1055/s-2006-957672. PMID: 9225614.
95C. Rong Y, Liu F, Zhou H, Yu T, Qin Z, Cao Q, Liu L, Ma X, Qu L, Xu P, Liao X, Jiang Q, Zhang N, Xu X. Reprogramming of arachidonic acid metabolism using α-terpineol to alleviate asthma: insights from metabolomics. Food Funct. 2024 Apr 22;15(8):4292-4309. doi: 10.1039/d3fo04078j. PMID: 38526853.
96C. Jin JS, Chou JM, Tsai WC, Chen YC, Chen Y, Ong JR, Tsai YL. Effectively α-Terpineol Suppresses Glioblastoma Aggressive Behavior and Downregulates KDELC2 Expression. Phytomedicine. 2024 May;127:155471. doi: 10.1016/j.phymed.2024.155471. Epub 2024 Feb 23. PMID: 38452695.
97C. Bashir A, Mushtaq MN, Younis W, Anjum I. Fenchone, a monoterpene: Toxicity and diuretic profiling in rats. Front Pharmacol. 2023 Jan 26;14:1119360. doi: 10.3389/fphar.2023.1119360. PMID: 36778012; PMCID: PMC9909529.
98C. Belanger JT. Perillyl alcohol: applications in oncology. Altern Med Rev. 1998 Dec;3(6):448-57. PMID: 9855569.
99C. Tambe Y, Tsujiuchi H, Honda G, Ikeshiro Y, Tanaka S. Gastric cytoprotection of the non-steroidal anti-inflammatory sesquiterpene, beta-caryophyllene. Planta Med. 1996 Oct;62(5):469-70. doi: 10.1055/s-2006-957942. PMID: 9005452.
1D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 1742210, beta-CARYOPHYLLENE OXIDE. Retrieved June 20, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/ beta-CARYOPHYLLENE-OXIDE.
2D. Chavan MJ, Wakte PS, Shinde DB. Analgesic and anti-inflammatory activity of Caryophyllene oxide from Annona squamosa L. bark. Phytomedicine. 2010 Feb;17(2):149-51. doi: 10.1016/j.phymed.2009.05.016. Epub 2009 Jul 2. PMID: 19576741.
3D. Jun, N. J. , Mosaddik A., Moon J. Y., Jang K.‐C., Lee D.‐S., Ahn K. S., et al. 2011. Cytotoxic activity of β-caryophyllene oxide isolated from Jeju Guava (Psidium cattleianum Sabine) leaf. Rec. Nat. Prod. 5:242–246.
4D. Shahwar D, Ullah S, Khan MA, Ahmad N, Saeed A, Ullah S. Anticancer activity of Cinnamon tamala leaf constituents towards human ovarian cancer cells. Pak J Pharm Sci. 2015 May;28(3):969-72. PMID: 26004731.
5D. Yang D, Michel L, Chaumont JP, Millet-Clerc J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia. 1999 Nov;148(2):79-82. doi: 10.1023/a:1007178924408. PMID: 11189747.
6D. Dalavaye N, Nicholas M, Pillai M, Erridge S, Sodergren MH. The Clinical Translation of α-humulene - A Scoping Review. Planta Med. 2024 Aug;90(9):664-674. doi: 10.1055/a-2307-8183. Epub 2024 Apr 16. PMID: 38626911; PMCID: PMC11254484.
7D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5281520, Humulene. Retrieved November 22, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Humulene.
8D. Chen H, Yuan J, Hao J, Wen Y, Lv Y, Chen L, Yang X. α-Humulene inhibits hepatocellular carcinoma cell proliferation and induces apoptosis through the inhibition of Akt signaling. Food Chem Toxicol. 2019 Dec;134:110830. doi: 10.1016/j.fct.2019.110830. Epub 2019 Sep 25. PMID: 31562948.
9D. Bungau SG, Vesa CM, Bustea C, Purza AL, Tit DM, Brisc MC, Radu AF. Antioxidant and Hypoglycemic Potential of Essential Oils in Diabetes Mellitus and Its Complications. Int J Mol Sci. 2023 Nov 19;24(22):16501. doi: 10.3390/ijms242216501. PMID: 38003691; PMCID: PMC10671358.
10D. Rogerio AP, Andrade EL, Leite DF, Figueiredo CP, Calixto JB. Preventive and therapeutic anti-inflammatory properties of the sesquiterpene alpha-humulene in experimental airways allergic inflammation. Br J Pharmacol. 2009 Oct;158(4):1074-87. doi: 10.1111/j.1476-5381.2009.00177.x. Epub 2009 May 8. PMID: 19438512; PMCID: PMC2785529.
11D. Dos Santos Negreiros P, da Costa DS, da Silva VG, de Carvalho Lima IB, Nunes DB, de Melo Sousa FB, de Souza Lopes Araújo T, Medeiros JVR, Dos Santos RF, de Cássia Meneses Oliveira R. Antidiarrheal activity of α-terpineol in mice. Biomed Pharmacother. 2019 Feb;110:631-640. doi: 10.1016/j.biopha.2018.11.131. Epub 2018 Dec 9. PMID: 30540974.
12D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 17100, Alpha-Terpineol. Retrieved June 12, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Alpha-Terpineol.
13D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 443162, (-)-alpha-Terpineol. Retrieved June 13, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/2-_1S_-4-methylcyclohex-3-en-1-yl_propan-2-ol.
14D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 11230, 4-Terpineol, (+/-)-. Retrieved June 12, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/4-Terpineol.
15D. Cao W, Li Y, Zeng Z, Lei S. Terpinen-4-ol Induces Ferroptosis of Glioma Cells via Downregulating JUN Proto-Oncogene. Molecules. 2023 Jun 8;28(12):4643. doi: 10.3390/molecules28124643. PMID: 37375197; PMCID: PMC10301057.
16D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 11467, gamma-Terpineol. Retrieved June 12, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/gamma-Terpineol.
17D. Wu ZL, Yin ZQ, Du YH, Feng RZ, Ye KC, Wei Q, Hu Y, He L, Liao L, Wang Y. γ-terpineol inhibits cell growth and induces apoptosis in human liver cancer BEL-7402 cells in vitro. Int J Clin Exp Pathol. 2014 Sep 15;7(10):6524-33. PMID: 25400730; PMCID: PMC4230123.
18D. Jin JS, Chou JM, Tsai WC, Chen YC, Chen Y, Ong JR, Tsai YL. Effectively α-Terpineol Suppresses Glioblastoma Aggressive Behavior and Downregulates KDELC2 Expression. Phytomedicine. 2024 May;127:155471. doi: 10.1016/j.phymed.2024.155471. Epub 2024 Feb 23. PMID: 38452695.
19D. Rong Y, Liu F, Zhou H, Yu T, Qin Z, Cao Q, Liu L, Ma X, Qu L, Xu P, Liao X, Jiang Q, Zhang N, Xu X. Reprogramming of arachidonic acid metabolism using α-terpineol to alleviate asthma: insights from metabolomics. Food Funct. 2024 Apr 22;15(8):4292-4309. doi: 10.1039/d3fo04078j. PMID: 38526853.
20D. Bicas JL, Neri-Numa IA, Ruiz AL, De Carvalho JE, Pastore GM. Evaluation of the antioxidant and antiproliferative potential of bioflavors. Food Chem Toxicol. 2011 Jul;49(7):1610-5. doi: 10.1016/j.fct.2011.04.012. Epub 2011 Apr 19. PMID: 21540069.
21D. Choi YJ, Sim WC, Choi HK, Lee SH, Lee BH. α-Terpineol induces fatty liver in mice mediated by the AMP-activated kinase and sterol response element binding protein pathway. Food Chem Toxicol. 2013 May;55:129-36. doi: 10.1016/j.fct.2012.12.025. Epub 2012 Dec 28. PMID: 23274539.
22D. Kamiya H, Haraguchi A, Mitarai H, Yuda A, Wada H, Shuxin W, Ziqing R, Weihao S, Wada N. In vitro evaluation of the antimicrobial properties of terpinen-4-ol on apical periodontitis-associated bacteria. J Infect Chemother. 2024 Apr;30(4):306-314. doi: 10.1016/j.jiac.2023.10.021. Epub 2023 Nov 3. PMID: 37922985.
23D. Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med. 2017 Apr;21(4):648-657. doi: 10.1111/jcmm.13008. Epub 2016 Nov 10. PMID: 27860262; PMCID: PMC5345622.
24D. Arafat K, Al-Azawi AM, Sulaiman S, Attoub S. Exploring the Anticancer Potential of Origanum majorana Essential Oil Monoterpenes Alone and in Combination against Non-Small Cell Lung Cancer. Nutrients. 2023 Dec 4;15(23):5010. doi: 10.3390/nu15235010. PMID: 38068868; PMCID: PMC10708317.
25D. Shapira S, Pleban S, Kazanov D, Tirosh P, Arber N. Terpinen-4-ol: A Novel and Promising Therapeutic Agent for Human Gastrointestinal Cancers. PLoS One. 2016 Jun 8;11(6):e0156540. doi: 10.1371/journal.pone.0156540. PMID: 27275783; PMCID: PMC4898785.
26D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5281553, beta-OCIMENE, (3E)-. Retrieved June 13, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/beta-OCIMENE_-_3E.
27D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5320250, beta-Ocimene, (3Z)-. Retrieved June 13, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/beta-Ocimene_-_3Z.
28D. National Center for Advancing Translational Sciences. (n.d.). Pilocarpus microphyllus leaf. Global Substance Registration System. Retrieved June 16, 2024, from https://gsrs.ncats.nih.gov/ginas/app/beta/substances/TY68V0X4KL
29D. Kim MJ, Yang KW, Kim SS, Park SM, Park KJ, Kim KS, Choi YH, Cho KK, Hyun CG. Chemical composition and anti-inflammation activity of essential oils from Citrus unshiu flower. Nat Prod Commun. 2014 May;9(5):727-30. PMID: 25026734.
30D. Oboh G, Ademosun AO, Odubanjo OV, Akinbola IA. Antioxidative properties and inhibition of key enzymes relevant to type-2 diabetes and hypertension by essential oils from black pepper. Adv Pharmacol Sci. 2013;2013:926047. doi: 10.1155/2013/926047. Epub 2013 Nov 21. PMID: 24348547; PMCID: PMC3856121.
31D. Mahdavifard S, Nakhjavani M. 1,8 cineole protects type 2 diabetic rats against diabetic nephropathy via inducing the activity of glyoxalase-I and lowering the level of transforming growth factor-1β. J Diabetes Metab Disord. 2022 Mar 9;21(1):567-572. doi: 10.1007/s40200-022-01014-2. PMID: 35673442; PMCID: PMC9167362.
32D. Cascone P, Iodice L, Maffei ME, Bossi S, Arimura G, Guerrieri E. Tobacco overexpressing β-ocimene induces direct and indirect responses against aphids in receiver tomato plants. J Plant Physiol. 2015 Jan 15;173:28-32. doi: 10.1016/j.jplph.2014.08.011. Epub 2014 Sep 2. PMID: 25462075.
33D. Takaishi M, Fujita F, Uchida K, Yamamoto S, Sawada Shimizu M, Hatai Uotsu C, Shimizu M, Tominaga M. 1,8-cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1. Mol Pain. 2012 Nov 29;8:86. doi: 10.1186/1744-8069-8-86. PMID: 23192000; PMCID: PMC3567430.
34D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 2758, Eucalyptol. Retrieved June 14, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Eucalyptol.
35D. Mahdavifard S, Nakhjavani M. 1,8 cineole protects type 2 diabetic rats against diabetic nephropathy via inducing the activity of glyoxalase-I and lowering the level of transforming growth factor-1β. J Diabetes Metab Disord. 2022 Mar 9;21(1):567-572. doi: 10.1007/s40200-022-01014-2. PMID: 35673442; PMCID: PMC9167362.
36D. Bellumori M, Innocenti M, Congiu F, Cencetti G, Raio A, Menicucci F, Mulinacci N, Michelozzi M. Within-Plant Variation in Rosmarinus officinalis L. Terpenes and Phenols and Their Antimicrobial Activity against the Rosemary Phytopathogens Alternaria alternata and Pseudomonas viridiflava. Molecules. 2021 Jun 5;26(11):3425. doi: 10.3390/molecules26113425. PMID: 34198771; PMCID: PMC8201224.
37D. Juergens UR. Anti-inflammatory properties of the monoterpene 1.8-cineole: current evidence for co-medication in inflammatory airway diseases. Drug Res (Stuttg). 2014 Dec;64(12):638-46. doi: 10.1055/s-0034-1372609. Epub 2014 May 15. PMID: 24831245.
38D. Seol GH, Kim KY. Eucalyptol and Its Role in Chronic Diseases. Adv Exp Med Biol. 2016;929:389-398. doi: 10.1007/978-3-319-41342-6_18. PMID: 27771935.
39D. National Institute of Diabetes and Digestive and Kidney Diseases. (n.d.). Low Blood Glucose (Hypoglycemia). National Institutes of Health. Retrieved June 14, 2024, from https://www.niddk.nih.gov/health-information/diabetes/overview/preventing-problems/low-blood-glucose-hypoglycemia
40D. Riyazi A, Hensel A, Bauer K, Geissler N, Schaaf S, Verspohl EJ. The effect of the volatile oil from ginger rhizomes (Zingiber officinale), its fractions and isolated compounds on the 5-HT3 receptor complex and the serotoninergic system of the rat ileum. Planta Med. 2007 Apr;73(4):355-62. doi: 10.1055/s-2007-967171. PMID: 17511060.
41D. National Cancer Institute. 5-HT3 receptor antagonist. Retrieved 11/24/2024 from https://www.cancer.gov/publications/dictionaries/cancer-terms/def/5-ht3-receptor-antagonist
42D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 442482, alpha-PHELLANDRENE, (-)-. Retrieved June 16, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/5R_-2-methyl-5-propan-2-ylcyclohexa-1_3-diene.
43D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 443160, (+)-alpha-Phellandrene. Retrieved June 16, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/5S_-2-methyl-5-propan-2-ylcyclohexa-1_3-diene.
44D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 7460, alpha-PHELLANDRENE. Retrieved June 16, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/alpha-PHELLANDRENE.
45D. Benjumea D, Abdala S, Hernandez-Luis F, Pérez-Paz P, Martin-Herrera D. Diuretic activity of Artemisia thuscula, an endemic Canary species. J Ethnopharmacol. 2005 Aug 22;100(1-2):205-9. doi: 10.1016/j.jep.2005.03.005. PMID: 16054534.
46D. Lin JJ, Hsu SC, Lu KW, Ma YS, Wu CC, Lu HF, Chen JC, Lin JG, Wu PP, Chung JG. Alpha-phellandrene-induced apoptosis in mice leukemia WEHI-3 cells in vitro. Environ Toxicol. 2016 Nov;31(11):1640-1651. doi: 10.1002/tox.22168. Epub 2015 Jul 15. PMID: 26174008.
47D. Bhattacharya, R., Sharma, P., Bose, D. et al. Synergistic potential of α-Phellandrene combined with conventional antifungal agents and its mechanism against antibiotic resistant Candida albicans. CABI Agric Biosci 5, 17 (2024). https://doi.org/10.1186/s43170-024-00218-1
48D. Hsieh SL, Li YC, Chang WC, Chung JG, Hsieh LC, Wu CC. Induction of necrosis in human liver tumor cells by α-phellandrene. Nutr Cancer. 2014;66(6):970-9. doi: 10.1080/01635581.2014.936946. Epub 2014 Jul 31. PMID: 25077527.
49D. Hsieh LC, Hsieh SL, Chen CT, Chung JG, Wang JJ, Wu CC. Induction of α-phellandrene on autophagy in human liver tumor cells. Am J Chin Med. 2015;43(1):121-36. doi: 10.1142/S0192415X15500081. Epub 2015 Feb 4. PMID: 25649747.
50D. Siqueira HDS, Neto BS, Sousa DP, Gomes BS, da Silva FV, Cunha FVM, Wanderley CWS, Pinheiro G, Cândido AGF, Wong DVT, Ribeiro RA, Lima-Júnior RCP, Oliveira FA. α-Phellandrene, a cyclic monoterpene, attenuates inflammatory response through neutrophil migration inhibition and mast cell degranulation. Life Sci. 2016 Sep 1;160:27-33. doi: 10.1016/j.lfs.2016.07.008. Epub 2016 Jul 20. PMID: 27449945.
51D. Susanto AC, Hartajanie L, Wu CC. α‑Phellandrene enhances the apoptosis of HT‑29 cells induced by 5‑fluorouracil by modulating the mitochondria‑dependent pathway. Oncol Rep. 2024 Apr;51(4):61. doi: 10.3892/or.2024.8720. Epub 2024 Mar 8. PMID: 38456489; PMCID: PMC10940876.
52D. Andrei C, Zanfirescu A, Nițulescu GM, Olaru OT, Negreș S. Natural Active Ingredients and TRPV1 Modulation: Focus on Key Chemical Moieties Involved in Ligand-Target Interaction. Plants (Basel). 2023 Jan 11;12(2):339. doi: 10.3390/plants12020339. PMID: 36679051; PMCID: PMC9860573.
53D. Melo LT, Duailibe MA, Pessoa LM, da Costa FN, Vieira-Neto AE, de Vasconcellos Abdon AP, Campos AR. (-)-α-Bisabolol reduces orofacial nociceptive behavior in rodents. Naunyn Schmiedebergs Arch Pharmacol. 2017 Feb;390(2):187-195. doi: 10.1007/s00210-016-1319-2. Epub 2016 Nov 29. PMID: 27900410.
54D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 442343, Levomenol. Retrieved June 17, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Levomenol.
55D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 1549992, Bisabolol. Retrieved June 17, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Bisabolol.
56D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 10586, alpha-Bisabolol. Retrieved June 17, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/alpha-Bisabolol.
57D. Eddin LB, Jha NK, Goyal SN, Agrawal YO, Subramanya SB, Bastaki SMA, Ojha S. Health Benefits, Pharmacological Effects, Molecular Mechanisms, and Therapeutic Potential of α-Bisabolol. Nutrients. 2022 Mar 25;14(7):1370. doi: 10.3390/nu14071370. PMID: 35405982; PMCID: PMC9002489.
58D. Solovăstru LG, Stîncanu A, De Ascentii A, Capparé G, Mattana P, Vâţă D. Randomized, controlled study of innovative spray formulation containing ozonated oil and α-bisabolol in the topical treatment of chronic venous leg ulcers. Adv Skin Wound Care. 2015 Sep;28(9):406-9. doi: 10.1097/01.ASW.0000470155.29821.ed. PMID: 26280699.
59D. Licari A, Ruffinazzi G, DE Filippo M, Castagnoli R, Marseglia A, Agostinis F, Puviani M, Milani M, Marseglia GL. A starch, glycyrretinic, zinc oxide and bisabolol based cream in the treatment of chronic mild-to-moderate atopic dermatitis in children: a three-center, assessor blinded trial. Minerva Pediatr. 2017 Dec;69(6):470-475. doi: 10.23736/S0026-4946.17.05015-0. PMID: 29181960.
60D. Arenberger P, Arenbergerová M, Drozenová H, Hladíková M, Holcová S. Effect of topical heparin and levomenol on atopic dermatitis: a randomized four-arm, placebo-controlled, double-blind clinical study. J Eur Acad Dermatol Venereol. 2011 Jun;25(6):688-94. doi: 10.1111/j.1468-3083.2010.03950.x. Epub 2011 Jan 9. PMID: 21214633.
61D. Crocco EI, Veasey JV, Boin MF, Lellis RF, Alves RO. A novel cream formulation containing nicotinamide 4%, arbutin 3%, bisabolol 1%, and retinaldehyde 0.05% for treatment of epidermal melasma. Cutis. 2015 Nov;96(5):337-42. PMID: 26682557.
62D. Javed H, Meeran MFN, Azimullah S, Bader Eddin L, Dwivedi VD, Jha NK, Ojha S. α-Bisabolol, a Dietary Bioactive Phytochemical Attenuates Dopaminergic Neurodegeneration through Modulation of Oxidative Stress, Neuroinflammation and Apoptosis in Rotenone-Induced Rat Model of Parkinson's disease. Biomolecules. 2020 Oct 8;10(10):1421. doi: 10.3390/biom10101421. PMID: 33049992; PMCID: PMC7599960.
63D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5356544, (+)-Nerolidol. Retrieved November 25, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/d-Nerolidol.
64D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5320128, cis-Nerolidol. Retrieved November 25, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/cis-Nerolidol.
65D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5284507, trans-Nerolidol. Retrieved November 25, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/trans-Nerolidol.
66D. Cazella LN, Glamoclija J, Soković M, Gonçalves JE, Linde GA, Colauto NB, Gazim ZC. Antimicrobial Activity of Essential Oil of Baccharis dracunculifolia DC (Asteraceae) Aerial Parts at Flowering Period. Front Plant Sci. 2019 Jan 29;10:27. doi: 10.3389/fpls.2019.00027. PMID: 30761171; PMCID: PMC6361755.
67D. Glumac M, Čikeš Čulić V, Marinović-Terzić I, Radan M. Mechanism of cis-Nerolidol-Induced Bladder Carcinoma Cell Death. Cancers (Basel). 2023 Feb 3;15(3):981. doi: 10.3390/cancers15030981. PMID: 36765938; PMCID: PMC9913136.
68D. Inoue Y, Shiraishi A, Hada T, Hirose K, Hamashima H, Shimada J. The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. FEMS Microbiol Lett. 2004 Aug 15;237(2):325-31. doi: 10.1016/j.femsle.2004.06.049. PMID: 15321680.
69D. Curvelo JAR, Marques AM, Barreto ALS, Romanos MTV, Portela MB, Kaplan MAC, Soares RMA. A novel nerolidol-rich essential oil from Piper claussenianum modulates Candida albicans biofilm. J Med Microbiol. 2014 May;63(Pt 5):697-702. doi: 10.1099/jmm.0.063834-0. Epub 2014 Feb 12. PMID: 24523158.
70D. Chan WK, Tan LT, Chan KG, Lee LH, Goh BH. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules. 2016 Apr 28;21(5):529. doi: 10.3390/molecules21050529. PMID: 27136520; PMCID: PMC6272852.
71D. Chow EWL, Pang LM, Wang Y. From Jekyll to Hyde: The Yeast-Hyphal Transition of Candida albicans. Pathogens. 2021 Jul 7;10(7):859. doi: 10.3390/pathogens10070859. PMID: 34358008; PMCID: PMC8308684.
72D. Klopell FC, Lemos M, Sousa JP, Comunello E, Maistro EL, Bastos JK, de Andrade SF. Nerolidol, an antiulcer constituent from the essential oil of Baccharis dracunculifolia DC (Asteraceae). Z Naturforsch C J Biosci. 2007 Jul-Aug;62(7-8):537-42. doi: 10.1515/znc-2007-7-812. PMID: 17913068.
73D. Vinholes J, Gonçalves P, Martel F, Coimbra MA, Rocha SM. Assessment of the antioxidant and antiproliferative effects of sesquiterpenic compounds in in vitro Caco-2 cell models. Food Chem. 2014 Aug 1;156:204-11. doi: 10.1016/j.foodchem.2014.01.106. Epub 2014 Feb 7. PMID: 24629959.
74D. Lipinski B. Hydroxyl radical and its scavengers in health and disease. Oxid Med Cell Longev. 2011;2011:809696. doi: 10.1155/2011/809696. Epub 2011 Jul 17. PMID: 21904647; PMCID: PMC3166784.
75D. Iqbal D, Khan MS, Waiz M, Rehman MT, Alaidarous M, Jamal A, Alothaim AS, AlAjmi MF, Alshehri BM, Banawas S, Alsaweed M, Madkhali Y, Algarni A, Alsagaby SA, Alturaiki W. Exploring the Binding Pattern of Geraniol with Acetylcholinesterase through In Silico Docking, Molecular Dynamics Simulation, and In Vitro Enzyme Inhibition Kinetics Studies. Cells. 2021 Dec 14;10(12):3533. doi: 10.3390/cells10123533. PMID: 34944045; PMCID: PMC8700130.
76D. Liu Y, Zhou S, Huang X, Rehman HM. Mechanistic insight of the potential of geraniol against Alzheimer's disease. Eur J Med Res. 2022 Jun 14;27(1):93. doi: 10.1186/s40001-022-00699-8. PMID: 35701806; PMCID: PMC9199166.
77D. Katsukawa M, Nakata R, Koeji S, Hori K, Takahashi S, Inoue H. Citronellol and geraniol, components of rose oil, activate peroxisome proliferator-activated receptor α and γ and suppress cyclooxygenase-2 expression. Biosci Biotechnol Biochem. 2011;75(5):1010-2. doi: 10.1271/bbb.110039. Epub 2011 May 20. PMID: 21597168.
78D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 643820, Nerol. Retrieved June 19, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Nerol.
79D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 637566, Geraniol. Retrieved November 26, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Geraniol.
80D. Crespo R, Rodenak-Kladniew BE, Castro MA, Soberón MV, Lavarías SML. Induction of oxidative stress as a possible mechanism by which geraniol affects the proliferation of human A549 and HepG2 tumor cells. Chem Biol Interact. 2020 Apr 1;320:109029. doi: 10.1016/j.cbi.2020.109029. Epub 2020 Feb 28. PMID: 32119866.
81D. Zhang YF, Huang Y, Ni YH, Xu ZM. Systematic elucidation of the mechanism of geraniol via network pharmacology. Drug Des Devel Ther. 2019 Apr 4;13:1069-1075. doi: 10.2147/DDDT.S189088. PMID: 31040644; PMCID: PMC6455000.
82D. Carnesecchi S, Schneider Y, Ceraline J, Duranton B, Gosse F, Seiler N, Raul F. Geraniol, a component of plant essential oils, inhibits growth and polyamine biosynthesis in human colon cancer cells. J Pharmacol Exp Ther. 2001 Jul;298(1):197-200. PMID: 11408542.
83D. Liu Y, Zhou S, Huang X, Rehman HM. Mechanistic insight of the potential of geraniol against Alzheimer's disease. Eur J Med Res. 2022 Jun 14;27(1):93. doi: 10.1186/s40001-022-00699-8. PMID: 35701806; PMCID: PMC9199166.
84D. Deng XY, Xue JS, Li HY, Ma ZQ, Fu Q, Qu R, Ma SP. Geraniol produces antidepressant-like effects in a chronic unpredictable mild stress mice model. Physiol Behav. 2015 Dec 1;152(Pt A):264-71. doi: 10.1016/j.physbeh.2015.10.008. Epub 2015 Oct 8. PMID: 26454213.
85D. Islam MT, Quispe C, Islam MA, Ali ES, Saha S, Asha UH, Mondal M, Razis AFA, Sunusi U, Kamal RM, Kumar M, Sharifi-Rad J. Effects of nerol on paracetamol-induced liver damage in Wistar albino rats. Biomed Pharmacother. 2021 Aug;140:111732. doi: 10.1016/j.biopha.2021.111732. Epub 2021 Jun 12. PMID: 34130201.
86D. Kim CM, Ko YJ, Lee SB, Jang SJ. Adjuvant antimicrobial activity and resensitization efficacy of geraniol in combination with antibiotics on Acinetobacter baumannii clinical isolates. PLoS One. 2022 Jul 21;17(7):e0271516. doi: 10.1371/journal.pone.0271516. PMID: 35862390; PMCID: PMC9302793.
87D. Friedman M, Henika PR, Mandrell RE. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot. 2002 Oct;65(10):1545-60. doi: 10.4315/0362-028x-65.10.1545. PMID: 12380738.
88D. Rekha KR, Selvakumar GP, Sethupathy S, Santha K, Sivakamasundari RI. Geraniol ameliorates the motor behavior and neurotrophic factors inadequacy in MPTP-induced mice model of Parkinson's disease. J Mol Neurosci. 2013 Nov;51(3):851-62. doi: 10.1007/s12031-013-0074-9. Epub 2013 Aug 13. PMID: 23943375; PMCID: PMC3824202.
89D. Tian J, Lu Z, Wang Y, Zhang M, Wang X, Tang X, Peng X, Zeng H. Nerol triggers mitochondrial dysfunction and disruption via elevation of Ca2+ and ROS in Candida albicans. Int J Biochem Cell Biol. 2017 Apr;85:114-122. doi: 10.1016/j.biocel.2017.02.006. Epub 2017 Feb 14. PMID: 28213053.
90D. Cui L, Zhang B, Zou S, Liu J, Wang P, Li H, Zhang Z. Fenchone Ameliorates Constipation-Predominant Irritable Bowel Syndrome via Modulation of SCF/c-Kit Pathway and Gut Microbiota. J Microbiol Biotechnol. 2024 Feb 28;34(2):367-378. doi: 10.4014/jmb.2308.08011. Epub 2023 Oct 28. PMID: 38073315; PMCID: PMC10940742.
91D. Takaishi M, Uchida K, Fujita F, Tominaga M. Inhibitory effects of monoterpenes on human TRPA1 and the structural basis of their activity. J Physiol Sci. 2014 Jan;64(1):47-57. doi: 10.1007/s12576-013-0289-0. PMID: 24122170; PMCID: PMC3889502.
92D. Nawaz S, Irfan HM, Alamgeer, Arshad L, Jahan S. Attenuation of CFA-induced chronic inflammation by a bicyclic monoterpene fenchone targeting inducible nitric oxide, prostaglandins, C-reactive protein and urea. Inflammopharmacology. 2023 Oct;31(5):2479-2491. doi: 10.1007/s10787-023-01333-7. Epub 2023 Sep 9. PMID: 37689616.
93D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 14525, Fenchone. Retrieved June 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Fenchone.
94D. Bashir A, Mushtaq MN, Younis W, Anjum I. Fenchone, a monoterpene: Toxicity and diuretic profiling in rats. Front Pharmacol. 2023 Jan 26;14:1119360. doi: 10.3389/fphar.2023.1119360. PMID: 36778012; PMCID: PMC9909529.
95D. Vogt-Eisele AK, Weber K, Sherkheli MA, Vielhaber G, Panten J, Gisselmann G, Hatt H. Monoterpenoid agonists of TRPV3. Br J Pharmacol. 2007 Jun;151(4):530-40. doi: 10.1038/sj.bjp.0707245. Epub 2007 Apr 10. PMID: 17420775; PMCID: PMC2013969.
96D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 440966, (-)-Camphene. Retrieved June 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/440966.
97D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 92221, (+)-Camphene. Retrieved June 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/92221.
98D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 6616, Camphene. Retrieved June 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Camphene.
99D. Stamatiou R, Anagnostopoulou M, Ioannidou-Kabouri K, Rapti C, Lazou A. Camphene as a Protective Agent in Myocardial Ischemia/Reperfusion Injury. Antioxidants (Basel). 2024 Mar 28;13(4):405. doi: 10.3390/antiox13040405. PMID: 38671853; PMCID: PMC11047447.
1E. Yang L, Liu H, Xia D, Wang S. Antioxidant Properties of Camphene-Based Thiosemicarbazones: Experimental and Theoretical Evaluation. Molecules. 2020 Mar 6;25(5):1192. doi: 10.3390/molecules25051192. PMID: 32155763; PMCID: PMC7179440.
2E. Spiteller G. Peroxyl radicals are essential reagents in the oxidation steps of the Maillard reaction leading to generation of advanced glycation end products. Ann N Y Acad Sci. 2008 Apr;1126:128-33. doi: 10.1196/annals.1433.031. PMID: 18448806.
3E. MDPI. (n.d.). Cedrol exhibits antinociceptive effects via TRPA1 and TRPV1 modulation. Molecules, 29(4), 815. Retrieved 11/25/2024 from https://www.mdpi.com/1420-3049/29/4/815
4E. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 65575, Cedrol. Retrieved June 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Cedrol.
5E. Wisconsin Horticulture - Division of Extension. Malabar spinach, Basella alba. Retrieved 6/21/2024 from https://hort.extension.wisc.edu/articles/malabar-spinach-basella-alba/
6E. Xu C, Jin SQ, Jin C, Dai ZH, Wu YH, He GL, Ma HW, Xu CY, Fang WL. Cedrol, a Ginger-derived sesquiterpineol, suppresses estrogen-deficient osteoporosis by intervening NFATc1 and reactive oxygen species. Int Immunopharmacol. 2023 Apr;117:109893. doi: 10.1016/j.intimp.2023.109893. Epub 2023 Feb 27. PMID: 36842234.
7E. Zhang YM, Shen J, Zhao JM, Guan J, Wei XR, Miao DY, Li W, Xie YC, Zhao YQ. Cedrol from Ginger Ameliorates Rheumatoid Arthritis via Reducing Inflammation and Selectively Inhibiting JAK3 Phosphorylation. J Agric Food Chem. 2021 May 12;69(18):5332-5343. doi: 10.1021/acs.jafc.1c00284. Epub 2021 Apr 28. Erratum in: J Agric Food Chem. 2021 Jul 21;69(28):8063. doi: 10.1021/acs.jafc.1c03690. PMID: 33908779.
8E. Zhang Y, Liu Y, Peng F, Wei X, Hao H, Li W, Zhao Y. Cedrol from ginger alleviates rheumatoid arthritis through dynamic regulation of intestinal microenvironment. Food Funct. 2022 Nov 14;13(22):11825-11839. doi: 10.1039/d2fo01983c. PMID: 36314362.
9E. Zhao Y, Li M, Guo J, Fang J, Geng R, Wang Y, Liu T, Kang SG, Huang K, Tong T. Cedrol, a Major Component of Cedarwood Oil, Ameliorates High-Fat Diet-Induced Obesity in Mice. Mol Nutr Food Res. 2023 Jul;67(14):e2200665. doi: 10.1002/mnfr.202200665. Epub 2023 May 23. PMID: 37143286.
10E. Yun HJ, Jeoung DJ, Jin S, Park JH, Lee EW, Lee HT, Choi YH, Kim BW, Kwon HJ. Induction of Cell Cycle Arrest, Apoptosis, and Reducing the Expression of MCM Proteins in Human Lung Carcinoma A549 Cells by Cedrol, Isolated from Juniperus chinensis. J Microbiol Biotechnol. 2022 Jul 28;32(7):918-926. doi: 10.4014/jmb.2205.05012. Epub 2022 Jul 1. PMID: 35880481; PMCID: PMC9628924.
11E. Zhang Z, Li M, Tan Q, Chen J, Sun J, Li J, Sun L, Chen N, Song Q, Zhao X, Li H, Zhang X. A moderate anticoccidial effect of cedrol on Eimeria tenella in broiler chickens. Parasitol Int. 2023 Dec;97:102779. doi: 10.1016/j.parint.2023.102779. Epub 2023 Jul 13. PMID: 37451395.
12E. Zhang Y, Wang JW, Qu FZ, Zhang YM, Su GY, Zhao YQ. Hair growth promotion effect of cedrol cream and its dermatopharmacokinetics. RSC Adv. 2018 Dec 18;8(73):42170-42178. doi: 10.1039/c8ra08667b. PMID: 35558774; PMCID: PMC9092075.
13E. Zhou Y, Jia L, Zhang G, Chen G, Zhou D, Shi X, Fu Q, Li N. Cedrol-loaded dissolvable microneedles based on flexible backing for promoting hair growth. Expert Opin Drug Deliv. 2023 Jul-Dec;20(9):1267-1276. doi: 10.1080/17425247.2023.2244413. Epub 2023 Aug 8. PMID: 37553988.
14E. Forouzanfar F, Pourbagher-Shahri AM, Ghazavi H. Evaluation of Antiarthritic and Antinociceptive Effects of Cedrol in a Rat Model of Arthritis. Oxid Med Cell Longev. 2022 Apr 25;2022:4943965. doi: 10.1155/2022/4943965. PMID: 35509836; PMCID: PMC9060983.
15E. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 10364, Carvacrol. Retrieved November 26, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Carvacrol.
16E. Mączka W, Twardawska M, Grabarczyk M, Wińska K. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics (Basel). 2023 Apr 27;12(5):824. doi: 10.3390/antibiotics12050824. PMID: 37237727; PMCID: PMC10215463.
17E. Lozon Y, Sultan A, Lansdell SJ, Prytkova T, Sadek B, Yang KH, Howarth FC, Millar NS, Oz M. Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol. Eur J Pharmacol. 2016 Apr 5;776:44-51. doi: 10.1016/j.ejphar.2016.02.004. Epub 2016 Feb 2. PMID: 26849939.
18E. Yousef EH, Abo El-Magd NF, El Gayar AM. Carvacrol enhances anti-tumor activity and mitigates cardiotoxicity of sorafenib in thioacetamide-induced hepatocellular carcinoma model through inhibiting TRPM7. Life Sci. 2023 Jul 1;324:121735. doi: 10.1016/j.lfs.2023.121735. Epub 2023 May 2. PMID: 37142088.
19E. Melo FH, Moura BA, de Sousa DP, de Vasconcelos SM, Macedo DS, Fonteles MM, Viana GS, de Sousa FC. Antidepressant-like effect of carvacrol (5-Isopropyl-2-methylphenol) in mice: involvement of dopaminergic system. Fundam Clin Pharmacol. 2011 Jun;25(3):362-7. doi: 10.1111/j.1472-8206.2010.00850.x. PMID: 20608992.
20E. Sharifi-Rad M, Varoni EM, Iriti M, Martorell M, Setzer WN, Del Mar Contreras M, Salehi B, Soltani-Nejad A, Rajabi S, Tajbakhsh M, Sharifi-Rad J. Carvacrol and human health: A comprehensive review. Phytother Res. 2018 Sep;32(9):1675-1687. doi: 10.1002/ptr.6103. Epub 2018 May 9. PMID: 29744941.
21E. Singh J, Luqman S, Meena A. Carvacrol as a Prospective Regulator of Cancer Targets/Signalling Pathways. Curr Mol Pharmacol. 2023 Mar 27;16(5):542-558. doi: 10.2174/1874467215666220705142954. PMID: 35792130.
22E. Fan K, Li X, Cao Y, Qi H, Li L, Zhang Q, Sun H. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drugs. 2015 Sep;26(8):813-23. doi: 10.1097/CAD.0000000000000263. PMID: 26214321.
23E. Priestley CM, Williamson EM, Wafford KA, Sattelle DB. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA(A) receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol. 2003 Dec;140(8):1363-72. doi: 10.1038/sj.bjp.0705542. Epub 2003 Nov 17. PMID: 14623762; PMCID: PMC1574153.
24E. Begrow F, Engelbertz J, Feistel B, Lehnfeld R, Bauer K, Verspohl EJ. Impact of thymol in thyme extracts on their antispasmodic action and ciliary clearance. Planta Med. 2010 Mar;76(4):311-8. doi: 10.1055/s-0029-1186179. Epub 2009 Oct 6. PMID: 19809973.
25E. Meeran, M. F. N., Javed, H., Al Taee, H., Azimullah, S., & Ojha, S. K. (2017). Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Frontiers in Pharmacology, 8, Article 380. https://doi.org/10.3389/fphar.2017.00380
26E. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 6989, Thymol. Retrieved November 28, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Thymol.
27E. Toschi, A., Tugnoli, B., Rossi, B. et al. Thymol modulates the endocannabinoid system and gut chemosensing of weaning pigs. BMC Vet Res 16, 289 (2020). https://doi.org/10.1186/s12917-020-02516-y
28E. Di Marzo V, Izzo AA. Endocannabinoid overactivity and intestinal inflammation. Gut. 2006 Oct;55(10):1373-6. doi: 10.1136/gut.2005.090472. PMID: 16966693; PMCID: PMC1856409.
29E. Abosamak NER, Shahin MH. Beta2 Receptor Agonists and Antagonists. [Updated 2023 Jul 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559069/
30E. Olsen RW. GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology. 2018 Jul 1;136(Pt A):10-22. doi: 10.1016/j.neuropharm.2018.01.036. Epub 2018 Jan 31. PMID: 29407219; PMCID: PMC6027637.
31E. Triggle DJ. L-type calcium channels. Curr Pharm Des. 2006;12(4):443-57. doi: 10.2174/138161206775474503. PMID: 16472138.
32E. Striessnig J, Ortner NJ, Pinggera A. Pharmacology of L-type Calcium Channels: Novel Drugs for Old Targets? Curr Mol Pharmacol. 2015;8(2):110-22. doi: 10.2174/1874467208666150507105845. PMID: 25966690; PMCID: PMC5384371.
33E. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 10887971, Sabinene. Retrieved June 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Sabinene.
34E. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 11051711, (-)-Sabinene. Retrieved June 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/11051711.
35E. Ryu Y, Lee D, Jung SH, Lee KJ, Jin H, Kim SJ, Lee HM, Kim B, Won KJ. Sabinene Prevents Skeletal Muscle Atrophy by Inhibiting the MAPK-MuRF-1 Pathway in Rats. Int J Mol Sci. 2019 Oct 8;20(19):4955. doi: 10.3390/ijms20194955. PMID: 31597276; PMCID: PMC6801606.
36E. Valente J, Zuzarte M, Gonçalves MJ, Lopes MC, Cavaleiro C, Salgueiro L, Cruz MT. Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food Chem Toxicol. 2013 Dec;62:349-54. doi: 10.1016/j.fct.2013.08.083. Epub 2013 Sep 5. PMID: 24012643.
37E. Hung NH, Quan PM, Satyal P, Dai DN, Hoa VV, Huy NG, Giang LD, Ha NT, Huong LT, Hien VT, Setzer WN. Acetylcholinesterase Inhibitory Activities of Essential Oils from Vietnamese Traditional Medicinal Plants. Molecules. 2022 Oct 20;27(20):7092. doi: 10.3390/molecules27207092. PMID: 36296686; PMCID: PMC9610647.
38E. Leafly. (n.d.). Ocimene: Effects, benefits, and where to find it. Retrieved 12/7/2024, from https://www.leafly.com
39E. Papke RL, Horenstein NA. Therapeutic Targeting of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev. 2021 Jul;73(3):1118-1149. doi: 10.1124/pharmrev.120.000097. PMID: 34301823; PMCID: PMC8318519.
40E. Pohanka M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int J Mol Sci. 2012;13(2):2219-2238. doi: 10.3390/ijms13022219. Epub 2012 Feb 17. PMID: 22408449; PMCID: PMC3292018.
41E. Theriot J, Wermuth HR, Ashurst JV. Antiemetics, Selective 5-HT3 Antagonists. [Updated 2024 Apr 19]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513318/
42E. Komorowska-Müller JA, Schmöle AC. CB2 Receptor in Microglia: The Guardian of Self-Control. Int J Mol Sci. 2020 Dec 22;22(1):19. doi: 10.3390/ijms22010019. PMID: 33375006; PMCID: PMC7792761.
43E. Foong AL, Grindrod KA, Patel T, Kellar J. Demystifying serotonin syndrome (or serotonin toxicity). Can Fam Physician. 2018 Oct;64(10):720-727. PMID: 30315014; PMCID: PMC6184959.
44E. Tagen M, Klumpers LE. Review of delta-8-tetrahydrocannabinol (Δ8 -THC): Comparative pharmacology with Δ9 -THC. Br J Pharmacol. 2022 Aug;179(15):3915-3933. doi: 10.1111/bph.15865. Epub 2022 Jun 1. Erratum in: Br J Pharmacol. 2023 Jan;180(1):130. doi: 10.1111/bph.15990. PMID: 35523678.
45E. Weston-Green K, Clunas H, Jimenez Naranjo C. A Review of the Potential Use of Pinene and Linalool as Terpene-Based Medicines for Brain Health: Discovering Novel Therapeutics in the Flavours and Fragrances of Cannabis. Front Psychiatry. 2021 Aug 26;12:583211. doi: 10.3389/fpsyt.2021.583211. PMID: 34512404; PMCID: PMC8426550.