top of page

Article by Justin L Scharton, Independent Researcher

Article written on April 4, 2025

​

​

Disclaimer: This information is provided for informational purposes only and is not intended to diagnose, treat, or cure any condition. Always consult a licensed medical professional before making changes to your healthcare regimen.

​

​

A Deeper Look at Lung Cancer: Subtypes, Receptors, and Innovations

There are different subtypes of lung cancer. Most available research is centered around the A549 subtype of non-small cell lung cancer (NSCLC), and Lewis Lung Cancer (LLC).

 

 

 

Non-Small Cell Lung Cancer (NSCLC) subtype Lung adenocarcinoma (A549)

 

Receptors involved

 

CB1, CB2, TRPV1, TRPV3, TRPV4, TRPM7.

​

​

​

Cannabinoids for NSCLC

 

Combining CBD, CBN, THC, and THCV will affect all receptors involved, and they are easy to get.

Most cannabinoids will help, and they are categorized below by each receptor

​

​

​

Terpenes for NSCLC

 

Humulene, b-caryophyllene, carvacrol. Possibly b-myrcene, (-)-α-bisabolol, nerolidol, geraniol, and cedrol.

More details on each are described below.

​

​

​

TRPV1

 

Terpenes that interact with the TRPV1 receptor

 

b-myrcene, (-)-α-bisabolol is a TRPV1 antagonist, nerolidol is a TRPV1 agonist, geraniol is a TRPV1 putative modulator, and cedrol is a TRPV1 modulator. (68C, 52D, 81D 3E)

​

​

TRPV1 agonists

 

Capsaicin, CBC, CBG, CBD, CBN, CBDA, CBGA, CBGV, CBDV, THCV, THCVA (3A, 13A 19A,20A,21A)

​

​

     TRPV1 acts as a tumor promoter in NSCLC through IGF1R signaling and regulating GABA release to affect the tumor immune response. TRPV1 inhibition suppressed NSCLC proliferation. (97F)

 

     It does seem that TRPV1 agonists are risky for lung cancer cells with overexpressed TRPV1, and activating that receptor could promote growth signals. However, TRPV1 agonists can also desensitize and downregulate the receptor over time. Research indicates that TRPV1 agonists cause long-term receptor downregulation by endocytosis and degradation of the channel, (79E) which could ultimately reduce the pro-tumor effects of TRPV1 overexpression.

​

​

​

​

​

TRPV3

 

TRPV3 agonists

 

CBD, CBGA, CBGV, THCV, camphor, menthol, dihydrocarveol, eucalyptol (1,8-cineole), carvacrol, thymol, carveol, (+)-borneol, eugenol. (3A,19A, 36A, 38A, 39A)

 

     TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. (98F)

​

​

​

​

TRPV4

 

TRPV4 agonists include

 

CBDV, CBG, THCV, CBN, CBGV, CBGA (3A,54A)

 

 

     TRPV4 induces cell death, inhibits cell proliferation and migration A549 breast cancer. This study was specific about increasing the expression of TRPV4 was needed to activate the p38 MAPK signal pathway, inducing cell death. TRPV4 agonists need to be researched for this activity, as it could have the same effect. (99F)

​

​

​

​

TRPM7

 

TRPM7 ligand

 

Carvacrol (found in Oregano) is a TRPM7 inhibitor. (16E,18E)

 

     TRPM7 is overexpressed in lung cancer cell lines SPCA-1, NCI-H520, SK-MES-1, A549 and 95D. Inhibiting TRPM7 stopped the epithelial-to-mesenchymal transition (EMT), and suppressed stemness markers and phenotypes, and the Hsp90α/uPA/MMP2 axis. (1G)

​

​

​

​

CB1 and CB2

 

CB1 ligands

 

humulene, THC, Anandamide (AEA), THCV (antagonist), CBG (partial agonist), CBN (Weak agonist). (6D 69A 70A 71A)

 

 

CB2 ligands

 

b-caryophyllene, CBD (Inverse agonist), CBC (agonist) CBG (partial agonist), THCV (Partial agonist). (69A 70A 72A 73A)

​

 

Activating CB1 or CB2 can reduce tumor cell invasiveness. (2G)

​

​

​

​

​

​

Lewis Lung Cancer (LLC)

​

Receptors involved

 

TRPA1, TRPM8 (3G)

​

 

TRPA1 agonists

 

CBC, CBD, CBG, CBN, THC, CBDV, THCV, CBGV, THCA, CBDA, CBGA, THCVA. (2A,3A,4A)

 

 

TRPM8 antagonists

 

CBC, CBD, CBG, CBN, THC, THCA, THCV, CBDA, CBDV, CBGA, CBGV, THCVA (3A,19A,54A)

​

​

​

Possible terpene to avoid

 

Eucalyptol (1,8 Cineole) is a TRPM8 agonist.(33D) Eucalyptol is known for having anti-cancer benefits to some cancers, but for lung cancer types that are worsened by the activation of TRPM8, it is not known if eucalyptol will do the same. That would need to be researched.

​

​

​

Lewis Lung Cancer Subtypes

​

LLC-1

 

TRPM8 is 3 times more abundant than TRPA1. (3G)

 

In a cold environment (where TRPM8 becomes activated), autophagy is less effective, which supports tumor progression. (3G)

​

​

​

LLC-2

 

Has equal amounts of TRPM8 and TRPA1. (3G)

 

Displays greater adhesion, migration, and invasiveness than LLC‑1 and LLC‑3. (3G)

 

More resistant to low-temperature conditions (hypothermia), showing reduced autophagy changes even when TRPM8 is activated by cold. (3G)

​

​

​

LLC-3

 

TRPA1 is three times more abundant than TRPM8. (3G)

 

Shows lower invasiveness than LLC‑2 but in some tests is more invasive than LLC‑1. (3G)

 

Under hypothermia, LLC‑3 undergoes more pronounced autophagy compared to both LLC‑1 and LLC‑2. (3G)

Sources

​

2A. Watanabe H., Vriens J., Prenen J., Droogmans G., Voets T., Nillus B. (2003). Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424, 434–438. 10.1038/nature01807

 

3A. Muller C, Morales P, Reggio PH. Cannabinoid Ligands Targeting TRP Channels. Front Mol Neurosci. 2019 Jan 15;11:487. doi: 10.3389/fnmol.2018.00487. PMID: 30697147; PMCID: PMC6340993.

 

4A. De Petrocellis L., Orlando P., Moriello A. S., Aviello G., Stott C., Izzo A. A., et al.. (2012a). Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta Physiol. 204, 255–266. 10.1111/j.1748-1716.2011.02338.x

 

13A. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 2004 Mar 25;41(6):849-57. doi: 10.1016/s0896-6273(04)00150-3. PMID: 15046718.

 

19A. De Petrocellis L., Ligresti A., Moriello A. S., Allarà M., Bisogno T., Petrosino S., et al.. (2011b). Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 163, 1479–1494. 10.1111/j.1476-5381.2010.01166.x 

 

20A. Lowin T., Straub R. H. (2015). Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis. Arthritis Res. Ther. 17:226. 10.1186/s13075-015-0743-x

 

21A. Petrosino S., Schiano Moriello A., Cerrato S., Fusco M., Puigdemont A., De Petrocellis L., et al.. (2016). The anti-inflammatory mediator palmitoylethanolamide enhances the levels of 2-arachidonoyl-glycerol and potentiates its actions at TRPV1 cation channels. Br. J. Pharmacol. 173, 1154–1162. 10.1111/bph.13084

 

36A. Kalinovskii AP, Utkina LL, Korolkova YV, Andreev YA. TRPV3 Ion Channel: From Gene to Pharmacology. Int J Mol Sci. 2023 May 11;24(10):8601. doi: 10.3390/ijms24108601. PMID: 37239947; PMCID: PMC10218142.

 

38A. Sherkheli MA, Benecke H, Doerner JF, Kletke O, Vogt-Eisele AK, Gisselmann G, Hatt H. Monoterpenoids induce agonist-specific desensitization of transient receptor potential vanilloid-3 (TRPV3) ion channels. J Pharm Pharm Sci. 2009;12(1):116-28. doi: 10.18433/j37c7k. PMID: 19470296.

 

39A. Vogt-Eisele AK, Weber K, Sherkheli MA, Vielhaber G, Panten J, Gisselmann G, Hatt H. Monoterpenoid agonists of TRPV3. Br J Pharmacol. 2007 Jun;151(4):530-40. doi: 10.1038/sj.bjp.0707245. Epub 2007 Apr 10. PMID: 17420775; PMCID: PMC2013969.

 

64A. Klumpp D, Frank SC, Klumpp L, Sezgin EC, Eckert M, Edalat L, Bastmeyer M, Zips D, Ruth P, Huber SM. TRPM8 is required for survival and radioresistance of glioblastoma cells. Oncotarget. 2017 Sep 30;8(56):95896-95913. doi: 10.18632/oncotarget.21436. PMID: 29221175; PMCID: PMC5707069.

 

69A. Reggio PH. Endocannabinoid binding to the cannabinoid receptors: what is known and what remains unknown. Curr Med Chem. 2010;17(14):1468-86. doi: 10.2174/092986710790980005. PMID: 20166921; PMCID: PMC4120766.

 

70A. Izzo, A. A., Borrelli, F., Capasso, R., Di Marzo, V., & Mechoulam, R. (2009). Non-psychotropic plant cannabinoids: New therapeutic opportunities from an ancient herb. Trends in Pharmacological Sciences, 30(10), 515- 527

 

71A. Morales P, Hurst DP, Reggio PH. Molecular Targets of the Phytocannabinoids: A Complex Picture. Prog Chem Org Nat Prod. 2017;103:103-131. doi: 10.1007/978-3-319-45541-9_4. PMID: 28120232; PMCID: PMC5345356.

 

72A. Jha NK, Sharma C, Hashiesh HM, Arunachalam S, Meeran MN, Javed H, Patil CR, Goyal SN, Ojha S. β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid can be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19. Front Pharmacol. 2021 May 14;12:590201. doi: 10.3389/fphar.2021.590201. PMID: 34054510; PMCID: PMC8163236.

 

73A. Udoh M, Santiago M, Devenish S, McGregor IS, Connor M. Cannabichromene is a cannabinoid CB2 receptor agonist. Br J Pharmacol. 2019 Dec;176(23):4537-4547. doi: 10.1111/bph.14815. Epub 2019 Nov 21. PMID: 31368508; PMCID: PMC6932936.

 

68C. Jansen C, Shimoda LMN, Kawakami JK, Ang L, Bacani AJ, Baker JD, Badowski C, Speck M, Stokes AJ, Small-Howard AL, Turner H. Myrcene and terpene regulation of TRPV1. Channels (Austin). 2019 Dec;13(1):344-366. doi: 10.1080/19336950.2019.1654347. PMID: 31446830; PMCID: PMC6768052.

 

6D. Dalavaye N, Nicholas M, Pillai M, Erridge S, Sodergren MH. The Clinical Translation of α-humulene - A Scoping Review. Planta Med. 2024 Aug;90(9):664-674. doi: 10.1055/a-2307-8183. Epub 2024 Apr 16. PMID: 38626911; PMCID: PMC11254484.

 

33D. Takaishi M, Fujita F, Uchida K, Yamamoto S, Sawada Shimizu M, Hatai Uotsu C, Shimizu M, Tominaga M. 1,8-cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1. Mol Pain. 2012 Nov 29;8:86. doi: 10.1186/1744-8069-8-86. PMID: 23192000; PMCID: PMC3567430.

 

52D. Andrei C, Zanfirescu A, Nițulescu GM, Olaru OT, Negreș S. Natural Active Ingredients and TRPV1 Modulation: Focus on Key Chemical Moieties Involved in Ligand-Target Interaction. Plants (Basel). 2023 Jan 11;12(2):339. doi: 10.3390/plants12020339. PMID: 36679051; PMCID: PMC9860573.

 

81D. Zhang YF, Huang Y, Ni YH, Xu ZM. Systematic elucidation of the mechanism of geraniol via network pharmacology. Drug Des Devel Ther. 2019 Apr 4;13:1069-1075. doi: 10.2147/DDDT.S189088. PMID: 31040644; PMCID: PMC6455000.

 

3E. MDPI. (n.d.). Cedrol exhibits antinociceptive effects via TRPA1 and TRPV1 modulation. Molecules, 29(4), 815. Retrieved 11/25/2024 from https://www.mdpi.com/1420-3049/29/4/815

 

16E. Mączka W, Twardawska M, Grabarczyk M, Wińska K. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics (Basel). 2023 Apr 27;12(5):824. doi: 10.3390/antibiotics12050824. PMID: 37237727; PMCID: PMC10215463.

 

18E. Yousef EH, Abo El-Magd NF, El Gayar AM. Carvacrol enhances anti-tumor activity and mitigates cardiotoxicity of sorafenib in thioacetamide-induced hepatocellular carcinoma model through inhibiting TRPM7. Life Sci. 2023 Jul 1;324:121735. doi: 10.1016/j.lfs.2023.121735. Epub 2023 May 2. PMID: 37142088.

 

79E. Sanz-Salvador L, Andrés-Borderia A, Ferrer-Montiel A, Planells-Cases R. Agonist- and Ca2+-dependent desensitization of TRPV1 channel targets the receptor to lysosomes for degradation. J Biol Chem. 2012 Jun 1;287(23):19462-71. doi: 10.1074/jbc.M111.289751. Epub 2012 Apr 6. PMID: 22493457; PMCID: PMC3365984.

 

97F. Wang Y, Zhang Y, Ouyang J, Yi H, Wang S, Liu D, Dai Y, Song K, Pei W, Hong Z, Chen L, Zhang W, Liu Z, Mcleod HL, He Y. TRPV1 inhibition suppresses non-small cell lung cancer progression by inhibiting tumour growth and enhancing the immune response. Cell Oncol (Dordr). 2024 Jun;47(3):779-791. doi: 10.1007/s13402-023-00894-7. Epub 2023 Oct 30. PMID: 37902941.

 

98F. Li X, Zhang Q, Fan K, Li B, Li H, Qi H, Guo J, Cao Y, Sun H. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer. Int J Mol Sci. 2016 Mar 24;17(4):437. doi: 10.3390/ijms17040437. PMID: 27023518; PMCID: PMC4848893.

 

99F. Zhao Y, Wang J, Liu X. TRPV4 induces apoptosis via p38 MAPK in human lung cancer cells. Braz J Med Biol Res. 2021 Oct 18;54(12):e10867. doi: 10.1590/1414-431X2021e10867. PMID: 34669779; PMCID: PMC8521542.

 

1G. Liu K, Xu SH, Chen Z, Zeng QX, Li ZJ, Chen ZM. TRPM7 overexpression enhances the cancer stem cell-like and metastatic phenotypes of lung cancer through modulation of the Hsp90α/uPA/MMP2 signaling pathway. BMC Cancer. 2018 Nov 26;18(1):1167. doi: 10.1186/s12885-018-5050-x. PMID: 30477473; PMCID: PMC6258145.

 

2G. Ramer R, Hinz B. Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. J Natl Cancer Inst. 2008 Jan 2;100(1):59-69. doi: 10.1093/jnci/djm268. Epub 2007 Dec 25. PMID: 18159069.

3G. Du GJ, Li JH, Liu WJ, Liu YH, Zhao B, Li HR, Hou XD, Li H, Qi XX, Duan YJ. The combination of TRPM8 and TRPA1 expression causes an invasive phenotype in lung cancer. Tumour Biol. 2014 Feb;35(2):1251-61. doi: 10.1007/s13277-013-1167-3. Epub 2013 Sep 15. PMID: 24037916.

bottom of page