Cannabinoid and Terpenoid Receptors, Ion Channels, and Enzymes
Article by Justin L Scharton, Independent Researcher
Last updated 12/9/2024
Receptors are specialized proteins that act as molecular switches and channels that mediate different chemicals and signals within the body. There are numerous receptors, but here we focus on the ones that are pharmacological targets for different health problems. There are at least 24 different receptors, ion channels, and enzymes that cannabinoids and terpenes will interact with, going way beyond the CB1 and CB2 receptors.
These molecular targets and their associated receptor actions or influences include:
Transient receptor potential (TRP) channels: TRPA1, TRPV1, TRPV2, TRPV3, TRPV4, TRPM7, TRPM8
Cannabinoid receptors: CB1, CB2
G protein-coupled receptor: GPR55
Opioid receptors: Mu opiate, Delta opiate
Ion channels: T-type calcium channel
Nuclear receptors: PPARγ
Serotonin receptors: 5HT1A, 5HT3
Enzymes and other modulators: Adenosine uptake inhibitors, COX-2, Phospholipase A2, mechanisms that suppress tryptophan degradation, Acetylcholinesterase inhibitors, α7 nAChR, Muscarinic Acetylcholine M3 receptors (CHRM3), and anticholinergic actions.
TRPA1
Transient receptor potential ankyrin 1
TRPA1 is a non-selective cation channel permeable to calcium, potassium and sodium ions.(5A)
In Mammals, TRPA1 is a sensor for chemical irritants, and sometimes referred to as the “wasabi receptor”. TRPA1 takes on a different role in infrared-sensing snakes and insects as a heat sensor, with mild sensitivity to chemical irritants.(6A)
TRPA1 receptors are on the plasma membranes of different cells, including sensory neurons and cerebral vascular endothelial cells. TRPA1 activation will cause neurogenic vasodilation through releasing the vasodilator, calcitonin gene-related peptide. TRPA1 activation in the cerebral vasculature causes endothelium-dependent vasodilation, starting with localized Ca2+ signals.(1A)
Cannabinoid agonists of TRPA1 in order of Potency EC50 (μM)( 2A,3A,4A)

Other TRPA1 agonists include: acetaldehyde (from ethanol metabolism),(7A) formaldehyde, iodoacetamide, 4-Hydroxynonenal,(8A) formalin,(9A) 4-oxononenal, mustard, cinnamaldehyde,(10A) hydrogen peroxide,(11A) allyl isothiocyanate (found in wasabi and mustard oils),(12A) ginger,(13A) and acrolein which is an irritant from gas and vehicle exhaust fumes.(14A)
Terpenes that interact with the TRPA1 receptor: eucalyptol is a TRPA1 antagonist,(33D) (-)-α-bisabolol is a TRPA1 antagonist,(53D) cedrol is a TRPA1 modulator,(3E) Carvacrol is a TRPA1 agonist,(15E) Thymol is an agonist of TRPA1,(25E) and eugenol acts as a TRPA1 agonist.(68C)
TRPA1 Antagonists: camphor, gadolinium and ruthenium red.(7A)
Important: some substances such as ruthenium red are for research purposes only, and is dangerous for people since it disrupts cell signals throughout the body and affects multiple receptors other than TRPA1.
Essential oils that activate TRPA1: cinnamon, wintergreen, clove, mustard,(13A) and bitter orange.(15A)
Many of these essential oils contain different terpenes, and some will activate more receptors than just TRPA1. For example, bitter orange contains linalyl acetate, geranyl acetate, osthole, geranyl propionate, neryl acetate, and other unlisted terpenes.(15A)
Alterations in TRPA1 include: Familial Episodic Pain Syndrome type 1, Cramp-Fasciculation Syndrome,(14A) Multi Chemical Sensitivity,(16A) Colorectal Cancer.(17A)
TRPV1
Transient receptor potential vanilloid 1
TRPV1 is a ligand-gated ion channels that facilitate transmembrane permeability to calcium and sodium ions.(18A)
TRPV1 are found on vascular smooth muscle and endothelial cells. Activation of TRPV1 with capsaicin can be either vasodilatory or vasoconstrictive depending on individual responses. Excessive TRPV1 activation through an unnecessary consumption of a large amount of capsaicin can result in vasospasm and heart attack in people with certain inflammatory conditions.(25A) Chronic use of TRPV1 agonists like capsaicin will desensitize neurons reducing pain such as diabetic peripheral neuropathy and arthritis.(24A)
Cannabinoid agonists of TRPV1 in order of Potency EC50 (μM)(3A,19A,20A,21A)

Other agonists include: Capsaicin13A, 4-oxononenal(22A), temperature above 42°C, intracellular acidosis (ph <6), 12-hydroperoxytetraenoic acid, and bradykinin(23A)
Antagonists: capsazepine, AMG-0347, AMG-517, AG-489, AG-505(24A)
Terpenes that interact with the TRPV1 receptor: b-myrcene,(68C) (-)-α-bisabolol is a TRPV1 antagonist,(52D) nerolidol is a TRPV1 agonist,(68C) geraniol is a TRPV1 putative modulator,(81D) and cedrol is a TRPV1 modulator.(3E)
TRPV1 activation with capsaicin is also anti-cancer and can reduce inflammation.(25A) Those receptors are on monocytes, macrophages, and dendritic cells. TRPV1 and other TRP receptors are required for T-cell receptor activation by mitogens.(26A)
Aside from being a heat receptor, hippocampal TRPV1 influences synaptic plasticity affecting memory and learning. Those TRPV1 receptors in the hippocampus affect the glutamatergic terminals.(28A)
TRPV1, along with CB1 activation can reduce excessive neuronal excitement and febrile seizures. They can also enhance neuronal plasticity.(27A 28A)
Alterations of TRPV1 include: Cystinosis, Nephropathic (kidney problems) and Pulpitis (tooth pulp decay/inflammation) and toothache,(29A,30A,31A) Multi Chemical Sensitivity.(16A)
TRPV2
Transient receptor potential vanilloid 2
TRPV2 is a non-selective cation channel permeable to calcium.(32A)
TRPV2 is located on neurons, neuroendocrine cells, immune cells, and some cancers.(33A)
TRPV2 is involved in immune system regulation and response. It plays a role in processes such as immune cell activation and cytokine release, making it a potential therapeutic target for enhancing immune function and treating various conditions linked to immune system activity.(80B)
Cannabinoid agonists of TRPV2 in order of Potency EC50 (μM)(3A,19A)

TRPV2 is activated by heat (≥52°C), probenecid, insulin-like growth factor 1 (IGF-1), insulin (INS), platelet-derived growth factor (PDGF), neurohypophysial hormone analogs (NHA), lysophosphatidylcholine (LPC), lysophosphatidylinositol (LPI), 2-aminoethoxydiphenyl borate (2-APB), and N-formylmethionine-leucyl-phenylalanine (fMLP).(34A)
Diseases associated with TRPV2 include: Kidney Pelvis Papillary Carcinoma and Renal Pelvis Transitional Cell Carcinoma.(32A)
TRPV2 traffickers
Interaction with certain receptors or through glycosylation can cause TRP receptors to move within the cytosol and surface at the cell membrane, where ligands can interact with them. This process is known as TRP trafficking.(81B) The exact mechanism behind this process is still not fully understood. CBD, as well as other molecules like IGF-1, insulin (INS), lysophosphatidylcholine (LPC), lysophosphatidylinositol (LPI), platelet-derived growth factor (PDGF), N-formylmethionine-leucyl-phenylalanine (fMLP), and neurohypophysial hormone analogs (NHA), appear to have this capability.(34A)
TRPV2 trafficking could benefit various disease processes and cancers by increasing the availability of TRPV2 receptors at the cell membrane, where they can be activated by cannabinoids, potentially enhancing immune system responses.
TRPV2 on immune cells
CD34+ hematopoietic stem cells - TRPV2 regulates stem/progenitor cell cycle progression, growth, and differentiation.(35A)
Granulocytes, macrophages, and monocytes - TRPV2 stimulates fMet-Leu-Phe migration, zymosan-, immunoglobulin G-, and complement-mediated phagocytosis. It also influences lipopolysaccharide-induced tumor necrosis factor-alpha and interleukin-6 production.(35A)
Mast cells - TRPV2 allows intracellular Ca2+ ions flux, stimulating protein kinase A-dependent degranulation.(35A)
CD56+ natural killer cells - TRPV2 is responsible for Ca2+ signal in T cell activation, proliferation, and effector functions.(35A)
CD4+ and CD8+ T lymphocytes - TRPV2 is located on messenger RNA.(35A)
CD19+ B lymphocytes - TRPV2 regulates Ca2+ release during B cell development and activation.(35A)
TRPV3
Transient receptor potential vanilloid 3
TRPV3 is a non-selective cation channel permeable to calcium.(36A)
TRPV3 is most abundant in keratinocytes and peripheral neurons. It is involved with signaling pathways of itch, dermatitis, hair growth, skin regeneration and physiology, temperature perception, pain transduction, inflammation, cancer and other diseases. TRPV3 is a potential pharmaceutical target for pain and itch.(36A,37A)
Cannabinoid agonists of TRPV3 in order of Potency EC50 (μM)(3A,19A)

Terpenes that are TRPV3 agonists: camphor, menthol, dihydrocarveol, 1,8-cineol,38A 6-tert-butyl-m-cresol, carvacrol, dihydrocarveol, thymol, carveol, (+)-borneol,(39A) eugenol.(36A)
Other agonists: 2-aminoethoxydiphenyl borate (2-APB),(38A) TRPV3 is activated from temperatures 22 and 40 degrees C, and an increased response at noxious temperatures greater than 39 degrees C.(40A)
Terpenes that interact with the TRPV3 receptor: camphor is a TRPV3 agonist,(95D) carvacrol is a TRPV3 agonist,(15E) thymol is an agonist of TRPV3,(25E) and eugenol is a TRPV3 agonist.(36A)
Whole herbs that contain terpenes that are agonists to TRPV3: oregano, savory, clove and thyme.(41A)
A prolonged exposure for 5-15 minutes to TRPV3 agonist terpenes, such as camphor and 1,8-cineol will result in desensitization of TRPV3. Long-term exposure to those terpenes desensitized the currents in TRPV3 that express oocytes.(38A) This study focused on amphibian oocytes, specifically those from Xenopus laevis, so it is unclear how these findings would translate to mammalian oocytes and their potential physiological effects.
TRPV3 activation can cause vasodilation through triggering the release of Adenosine Triphosphate (ATP), calcitonin gene-related peptide (CGRP), nitric oxide (NO), and prostacyclin (PGI2).(42A,43A)
Diseases associated with TRPV3 include: Olmsted Syndrome 1 and Focal 2 Nonepidermolytic Palmoplantar Keratoderma.(43A)
TRPV4
Transient receptor potential vanilloid 4
TRPV4 is a non-selective calcium permanent cation channel involved in osmotic sensitivity and mechanosensitivity.(44A)
TRPV4 is in cardiomyocytes, endothelial cells, smooth muscle cells, lung, chondrocytes, neurons, astrocytes, and sperm.(45A,46A,47A,48A)
TRPV4 modulates mitochondrial activity, Ca2+ homeostasis, sperm motility and thermotaxis, cardiomyocytes electrical activity and contractility, cardiac embryonic development and fibroblast proliferation, as well as vascular permeability, dilatation and constriction.(45A,47A)
Cannabinoid agonists of TRPV4 in order of Potency EC50 (μM)(3A,54A)

TRPV4 is activated by heat (27–34 °C), mechanical stimuli, hypo-osmolarity and arachidonic acid metabolites, P450-derived metabolites (epoxyeicosatrienoic acids), endocannabinoids (anandamide and 2-arachidonoylglycerol).(51A,52A)
TRPV4 becomes upregulated in cardiac fibrosis, hypertrophy, ischemia-reperfusion injuries, heart failure, myocardial infarction and arrhythmia, cystic fibrosis, ciliary beat frequency, bronchoconstriction, chronic obstructive pulmonary disease, pulmonary hypertension, acute lung injury, acute respiratory distress syndrome and cough.(45A,46A)
Mutations of TRPV4 include brachyolmia and Koszlowski disease.(51A)
Diseases associated with TRPV4 include Metatropic Dysplasia and Hereditary Motor And Sensory Neuropathy, Type 2C.(44A)
TRPV4 activation in macrophages are required for effective phagocytosis, and secreting anti-inflammatory cytokines. TRPV4 was found to protect the lung from injury after pneumonia from an infection with P. aeruginosa through MAPK signaling.(53A)
In a rat study, TRPV4 was found to become upregulated in sterile pericarditis in rats with atrial fibrillation.(49A) TRPV4 inhibition reduces atrial remodeling and induction of atrial fibrillation.(50A)
TRPV4 channels are present in astrocytes in the brain. They regulate blood flow by controlling calcium ion flow in the endfeet, the branches of astrocytes that wrap around and interact with blood vessels.(48A)
TRPV4 channels are found in all vertebrate sperm cells, from fish to mammals. This receptor is important for sperm motility and thermotaxis, and its expression and location differ between swim-up and swim-down sperm cells. Activation of TRPV4 induces calcium influx, which regulates the movement of sperm, and may have implications for male fertility, contraception, and species conservation.(47A)
TRPM7
Transient receptor potential melastatin 7
Carvacrol is the only terpene to target TRPM7.(18E) Cannabinoids do not interact with this receptor.
TRPM7 is not a pharmacological target for medications yet, but carvacrol (from oregano) is a TRPM7 inhibitor.(18E)
Carvacrol is a TRPM7 inhibitor and anti liver cancer
Carvacrol, a TRPM7 inhibitor, shows promise in overcoming sorafenib (Sora) resistance and its associated cardiotoxicity in hepatocellular carcinoma (HCC). In a rat model of HCC, the combination of carvacrol and Sora improved survival rates, enhanced liver function, and reduced tumor progression compared to Sora alone. Carvacrol mitigated sorafenib-induced damage to cardiac and liver tissues and boosted its anti-cancer effects by promoting apoptosis and inhibiting proliferation, angiogenesis, and metastasis. The combination downregulated key markers of drug resistance and stemness, such as NOTCH1 and CD133, suggesting its potential as an effective and safer therapeutic strategy for advanced HCC.(18E)
There is limited research for TRPM7 compared to the other TRP receptors that are easily targeted by pharmaceuticals.
TRPM8
Transient receptor potential melastatin 8
TRPM8 is a receptor-activated non-selective cation channel permeable for monovalent cations sodium, potassium, and cesium and divalent cation calcium.(55A)
TRPM8 detects sensations such as coolness, by being activated by cold temperature below 25 degrees Celsius.(55A)
Cannabinoid antagonists of TRPM8 in order of Potency IC50 (μM)(3A,19A,54A)
Tested against Icilin

Tested against Menthol

Cannabinoids act as antagonists to TRPM8, as opposed to TRPA1 and TRPV1-4 in which they act as agonists.
Terpenes that interact with the TRPM8 receptor: eucalyptol is a TRPM8 agonist.(33D)
Diseases associated with TRPM8 include Lichen Sclerosus Et Atrophicus and Dentin Sensitivity.(55A)
Cancers with TRPM8: colon, bone, breast, pancreatic, gastric, esophageal, oral squamous cell, uveal melanoma, malignant melanoma A-375 cells, bladder, glioblastoma, and prostate. (56A,57A,58A,59A,60A,61A,62A,63A,64A,65A)
TRPM8 is moderately expressed in normal prostate tissue, and becomes highly overexpressed in prostate cancer.(66A)
Mutations in TRPM8 gene expression are associated with dry eye disease (DED). Mice with severe DED were given installations of a TRPM8 antagonist, M8-B, which relieved the corneal pain associated with severe DED.(67A)
TRPM8 is abnormally expressed in non-melanoma skin cancers (NMSC). In basal cell carcinoma (BCC), TRPM8 expression is much lower compared to normal skin, while in squamous cell carcinoma (SCC), TRPM8 receptors are overexpressed.(68A)
There are two oral squamous cell carcinoma cell lines, HSC3 and HSC4, that can be worsened by TRPM8 agonists like menthol. TRPM8 antagonists are needed to reduce the invasion potential of these cancer types.(60A)
CB1 and CB2
Cannabinoid Receptor 1 and 2
CB1 and CB2 are class A G protein-coupled receptors (GPCRs)(69A)
CB1 Ligands
THC, Anandamide (AEA), 2-arachidonoyl-glycerol (2-AG), THCV (antagonist), CBG (partial agonist), CBN (Weak agonist)(69A,70A,71A)
CB2 Ligands
2-arachidonoyl-glycerol (2-AG), Caryophyllene, CBD (Inverse agonist), CBC (agonist) CBG (partial agonist), THCV (Partial agonist), Anandamide (AEA) (low affinity compared to CB1)(69A,70A,72A,73A)
Terpenes that interact with the CB1 receptor: humulene(6D)
Terpenes that interact with the CB2 receptor: b-caryophyllene(72A)
CB1 and CB2 locations in the body
CB1 and CB2 receptors are expressed in 37 tissues in the human body, according to data from microarray and RNA sequencing analysis.(74A,75A) Previous research suggested that CB1 receptors were present in areas where CB2 receptors were not, particularly in the brain. However, newer studies indicate that both receptors are more widely distributed, including in overlapping areas.
Here are the tissues tested for CB1 and CB2 receptors: Adipocyte, Adrenal gland, Artery, Bladder, Bone marrow, Brain, Breast, Cerebellum, Colon, Cortex, Esophagus, Heart, Kidney, Liver, Lung, Lymph nodes, Ovary, Pancreas, Pituitary, Placenta, Prostate, Retina, Salivary gland, Spinal cord, Skeletal muscle, Skin, Small intestine, Smooth muscle, Spleen, Stomach, Testis, Thymus, Thyroid, Uterus, White blood cells, Tibial nerve, Whole blood.(74A,75A)
CB1 and CB2 on immune cells
CB1 is located on B-cells, T-cells, and innate cells.(77A) Innate cells include: granulocytes, monocytes, macrophages, dendritic cells, and natural Killer cells.(78A,79A)
CB2 location on the immune cells are B-cells, natural killer cells, monocytes, macrophages, polymorphonuclear neutrophil cells, T8 cells, T4 cells.(79A,80A,81A)
Synthetic CB1 agonist can be deadly
CB1 and CB2 receptors are more difficult to target with synthetic pharmaceuticals due to their widespread effects and complex signaling, but they are more easily influenced by natural cannabinoids. In 2016, a clinical trial involving a FAAH inhibitor called BIA 10-2474, which indirectly affects the CB1 receptor, resulted in one person being declared brain dead and five others in critical condition.(76A)
CB1 activation and seizure reduction
CB1 activation can reduce excitatory synaptic transmission and cause vasodilation.(74A) However, in seizure types related to issues with vasodilation, such as those triggered by hot showers, CB1 activation may lead to mixed results due to excessive cerebral vasodilation. In such cases, CBD might be a better option, as it can modulate CB1 activity or balance out the effects of CB1 activation when combined with THC.
How CBD stops you from getting high!


There is no available information on how CBD actually stops the “getting high” effect of THC when taken in a 1:1 ratio or other ratios with higher amounts of CBD. It is known that CB2 is on microglia, and neurons communicate with microglia.(42E) THC binding to brain CB1 receptors are responsible for people feeling high from marijuana.(82A) The above images are the possible representation on how CBD interacts with microglia, and how that microglia modulates the neuron with THC bound to it; reducing the excitatory calcium ions going from the presynaptic and postsynaptic neurons.
GPR55
G protein-coupled receptor 55
GPR55 are receptors that are highly expressed in large dorsal root ganglion neurons. Activation of GPR55 from some cannabinoids, like THC, will increase intracellular calcium in those neurons, and inhibit M-current.(83A) M-type current in neurons uses potassium to help regulate neuronal excitability, stabilizes membrane potential, and prevents excessive neuronal firing.(84A) M-type current is also inhibited by the activation of M1 muscarinic receptors that is activated by acetylcholine.(85A)
Delta 9 THC activates GPR55, while CBD inhibits GPR55.86A GPR55 inhibition could help with intestinal inflammation through reducing leukocyte migration and activation, particularly macrophages.(87A)
Delta 9 THC, the anandamide analog methanandamide, and JWH015 are confirmed to activate GPR55 receptors.(83A) CBD has some similar effects to GPR55 antagonists, but it is unclear if CBD directly interacts with the GPR55, or if its effect of GPR55 is from indirect interactions from other receptors.(89A) More research will need to be done to verify how CBD influences GPR55.
There are no current medications outside of research use to target the GPR55 receptor.
GPR55 and nicotine addiction
GPR55 inhibition disrupted the reward center of the brain in relation to nicotine addiction.(88A) It is possible that THC might worsen nicotine addiction since THC activates GPR55, and CBD might decrease nicotine addiction since CBD inhibits GPR55 based on that study, but more targeted research would need to be done on how THC or CBD would affect nicotine addiction. Since those cannabinoids affect more than just GPR55, it is not clear how those cannabinoids will affect the reward center of the brain with nicotine.
μ-Opiate and δ-Opiate
Mu-Opiate and Delta-Opiate receptors
Mu and Delta opiate receptors and different subtypes and effects as follows:
- Mu-1 receptor is responsible for analgesia and dependence.(90A)
- Mu-2 receptor will cause euphoria, dependence, respiratory depression, miosis, decreased digestive tract motility along with constipation.(90A)
- Mu-3 receptor is responsible for vasodilation.(90A)
- Delta receptors bind to enkephalins that play a role in analgesia and reduction in gastric motility.(90A)
CBD and Delta 9 THC are allosteric modulators of Mu and Delta opiate receptors, meaning they can change how those receptors will respond to other ligands, whether endogenous or from an external source like morphine.(91A) This could possibly help with increasing the effectiveness of the pain relief of opiates with a lower dose when combined with different levels of CBD and/or THC.
How Myrcene releases endogenous opiates
A 1990 study about myrcene showed that pain relief (antinociception) this terpene involves endogenous opioids and alpha-2 receptors. This action was reversed (antagonized) by Naloxone (Narcan),(92A,93A) which is used to reverse opioid overdose. A 2003 study further explained that mu-opioid receptors and alpha2A-adrenergic receptors can physically interact and modulate each other’s signaling pathways.(94A)
Myrcene can help with pain relief from interacting with the alpha2A-adrenergic receptor that releases endogenous opiates. Those opiates interact with the mu-opiate receptors, reducing pain. Narcan will reverse those endogenous opiates, which will increase pain. Other ligands, such as adrenaline (epinephrine), will interact with the alpha2A-adrenergic receptors.(95A) Myrcene along with THC or CBD can enhance the pain relief action of the opiate receptors with the entourage effect.
Delta-opioid receptors are targeted by a few medications
Eluxadoline is an agonist of both Mu and Delta opioid receptors and is used to treat irritable bowel syndrome with diarrhea (IBS-D).(97A)
Buprenorphine is a partial agonist at the Mu receptor and has mild interactions with the Delta opioid receptor. This medication is often used to treat opioid use disorders and manage pain. It is less likely to cause physical dependence compared to other opioids, making it a suitable option for replacement therapy in heroin addiction.(98A)
T-type Calcium Channel Modulation
T-type Ca2+ channels have a role in the development, maintenance, and repair of many tissues, including neuronal, cardiovascular, and endocrine. Dysregulation of T-type calcium channels can result in different diseases of those tissues. T-type Ca2+ channel blockers have been found to be neuroprotective, and help with age related hearing loss. They may even help with protecting auditory neurons against acoustic trauma.(99A)
Medications that interact with T-type calcium channels:
Ethosuximide is an anti-epileptic medication to treat absence seizures that is an inhibitor of the T-type calcium channel.(1B)
Zonisamide is a T-type calcium channel inhibitor used to treat partial onset seizures, infantile spasms, myoclonic, absence generalized tonic-clonic seizures and tonic/atonic seizures.(2B)
Mibefradil is a selective T-type calcium channel inhibitor that was used to treat high blood pressure.(3B) It was removed from the market in 1998 due to dangerous interactions with other medications.(4B)
Verapamil and Diltiazem are used to treat hypertension, cardiac arrhythmia, and coronary vasospasm, and are effective in the treatment of angina pectoris.(5B) Those medications are a combined T and L-type calcium channel inhibitor.(6B)
CBD and THC interacts differently from each other with the T-type calcium channel
THC acts as a T-Type calcium channel indirect agonist
THC prolongs the opening of T-type calcium channels, allowing increased calcium influx,(7B) which indirectly enhances calcium activity without directly binding to or fully activating the channel in the typical manner of an agonist.
CBD acts as a T-Type calcium channel modulator
CBD does not prolong the opening of T-type calcium channels,(7B) but it can still influence the channel’s behavior by regulating its function, making it a modulatory agent rather than a direct agonist or antagonist.
Keeping in mind their different actions can direct what cannabinoids to use for specific effects. This action with T-Type calcium channels can affect the cardiovascular system, and THC may cause problems with certain people with different heart conditions. Certain seizure disorders will also react differently to THC and CBD through these channels. THC may be better for other applications that benefit from the extra calcium ions entering the cells with the open channel, such as certain types of pain. Targeted research is needed to address the specifics of how THC and CBD should be used for different conditions that are affected by T-type calcium channels.
PPARy
Peroxisome proliferator-activated receptor gamma
Rosiglitazone (Avandia) and pioglitazone (Actos) are used to treat type 2 diabetes. Their blood sugar-lowering effect comes from increasing insulin sensitivity by activating the PPARγ receptor.(8B,9B)
CBD and Delta 9 THC activate PPARy (PPAR-gamma). The vasorelaxation effects of CBD may be partially due to the activation of PPARy, but is mostly from calcium channel inhibition.(10B) Activation of PPARy is known for causing insulin sensitization and enhances glucose metabolism.(11B)
Terpenes that interact with PPAR: geraniol and citronellol are PPARa and PPARy agonists.(77D)

When CBD interacts with the PPARy receptor, it modulates the insulin channel on the same cell to allow for glucose to enter the cell easier by increasing insulin sensitivity.

5HT1A
5HT1A receptors are a pharmacological target for depression, anxiety, and other psychiatric disorders.(12B)
CBD is an agonist of 5-HT1a, and was found to reduce the response to stress. This may be helpful for stress-coping mechanisms, such as depression and post-traumatic stress disorder.(13B)
Alterations in 5HT1A receptors
In conditions like schizophrenia, there is an increase of 5HT1A receptors in the prefrontal cortex. In Alzheimer’s Disease, there is a decrease in 5HT1A binding in the temporal cortex that is linked to aggressive behavior associated with that disorder. Other altered expressions of 5HT1A are observed in emotional and behavioral disorders.(14B)
Medication classifications of antidepressants and antipsychotics are classified into the following categories:
5HT1A agonist - Medications like buspirone and flesinoxan bind to the 5HT1A autoreceptors that stop the release of serotonin from the presynaptic terminal. The medication binds to the 5HT1A receptors on the postsynapse.(14B) Vilazodone is a partial 5HT1A agonist and a serotonin partial agonist reuptake inhibitor.15B Trazodone have partial agonist properties of 5HT1A, and an antagonist of the A1-adrenoceptor.(16B)
5HT1A antagonist - These medications are often used for depression, anxiety, drug- and nicotine-withdrawal, and cognitive dysfunction like Alzheimer’s Disease.(14B) Those medications affect other receptors and neurotransmitters, but also can antagonize the 5HT1A receptor. Risperidone and Chlorpromazine are a couple of examples of this class of drugs.(17B)
SSRI - These medications inhibit the protein SERT (Serotonin Transporter) that is located on the surface of the presynaptic neuron. Extra serotonin can remain in the synaptic cleft or gap in between the neurons since SERT has a reduced ability to absorb the serotonin.(18B) Medications in this class include: Fluoxetine, Sertraline, Paroxetine, Fluvoxamine, Citalopram, Escitalopram, Vilazodone. They are often prescribed to treat Major depressive disorder, Generalized anxiety disorder, Bulimia nervosa, Bipolar depression, Obsessive-compulsive disorder, Panic disorder, Premenstrual dysphoric disorder, Treatment-resistant depression, Post-traumatic stress disorder, Social anxiety disorder.(19B)
MAOI - These are often used to treat atypical depression, panic, social anxiety disorders, treatment-resistant depression, and bipolar disorder. Monoamine oxidases (MAO) breakdown neurotransmitters like norepinephrine, epinephrine, dopamine, tryptamine, and tyramine, inhibiting those enzymes. Inhibition of MAO-A and MAO-B will increase those neurotransmitters.(20B)
Tricyclic antidepressants decrease the reuptake of norepinephrine and serotonin, making those neurotransmitters more available in the synaptic cleft. They often take weeks for the antidepressant action to start working. Medications in this class include: Imipramine, Trimipramine, Amitriptyline, Nortriptyline, Desipramine, Protriptyline, Doxepin, and Clomipramine.(21B)
Dangers of Combining CBD with Prescription Antidepressants
Combining CBD with antidepressants that increase serotonin levels can raise serotonin excessively, potentially causing harmful or even dangerous side effects.
Mild symptoms may include nervousness, insomnia, nausea, diarrhea, tremor, and dilated pupils. These can progress to moderate signs such as hyperreflexia (overactive reflexes), sweating, agitation, restlessness, clonus (rhythmic muscle spasms), and ocular clonus (side-to-side eye movements).(43E)
Severe symptoms of excessive serotonin include a body temperature exceeding 38.5°C (101.3°F), confusion, delirium, sustained clonus or muscle rigidity, and rhabdomyolysis (muscle breakdown).(43E)
5HT3
5HT3 receptor antagonists include dolasetron, granisetron, palonosetron, and ondansetron. These are used to treat nausea and vomiting. Gastric irritation or cellular damage triggers the intestinal release of 5-HT, which binds to 5-HT3 receptors in the GI tract. When 5-HT (serotonin) binds to 5-HT3 receptors, it will trigger nausea and vomiting.(41E)
The terpene alpha-phellandrene is also a 5-HT3 receptor antagonist.(40D) 5HT3 antagonists can be used to treat certain types of irritable bowel syndrome and relieve nausea and vomiting. It is a type of antiemetic. 5HT3 is also called 5-hydroxytryptamine 3 receptor or type 3 serotonin receptor.(41D)
Terpenes that interact with the 5-HT receptor: beta-pinene is a 5-HT3 receptor antagonist,(40D) a-phellandrene is a 5-HT3 receptor antagonist,(40D) fenchone is a 5 HT receptor modulator.(90D)
Adenosine
CBD is an adenosine uptake competitive inhibitor, which contributes to the anti-inflammatory effects of CBD. Mice treated with a low dose of CBD reduced TNF alpha production.(22B) It blocks the ENT1 transporter which is responsible for the reuptake of adenosine. The extra adenosine in the extracellular space is able to bind to adenosine A1 and A2A receptors. Activation of A1 provides antiarrhythmic benefits, while A2A has anti-inflammatory properties.(23B)
Terpenes that interact with the adenosine A2A receptor: +/- limonene,(89B) and humulene.(6D)
Medications that work with adenosine
Dipyridamole is an adenosine reuptake inhibitor, and a platelet phosphodiesterase inhibitor. This medication increases vasodilation, coronary blood flow, and decreases platelet aggregation. The increased adenosine is responsible for the vasodilation and increased blood flow, and partially responsible for the decreased platelet aggregation. The phosphodiesterase inhibition is also responsible for platelet aggregation.(24B,25B) Platelets have adenosine A2A and A2B receptors, and are considered as a pharmacological target for antiplatelet therapy.(26B)
Regadenoson is a selective A2A adenosine receptor agonist. It is used as a vasodilator to increase coronary blood flow during cardiac stress tests.(27B)
Istradefylline is a selective adenosine A2A receptor antagonist to treat the off episodes of Parkinson's patients while on levodopa/decarboxylase treatment.(28B)
COX-2
CBDA is a potent and selective COX-2 inhibitor with an IC(50) at around 2 microM. CBDA affects COX-2 with a nine-fold higher selectivity than COX-1 inhibition. THCA also is a COX-2 inhibitor, but is less potent than CBD with an IC(50) at over 100 microM.(29B)
Celecoxib (Celebrex) is a selective COX-2 inhibitor. That inhibition is responsible for reducing inflammation, fever, and pain. It mildly inhibits COX-1, which affects platelet aggregation less than that of aspirin.(30B)
Most other NSAIDS inhibit both COX-1 and COX-2. These include ibuprofen (Motrin), naproxen (Aleve, Naprosyn), and Ketorolac (Toradol). COX-1 is responsible for providing the protective mucous layer in the stomach. When COX-1 is inhibited, that mucous layer is compromised leading to ulcers.(31B)
CBDA is unstable, and will eventually decarboxylate into CBD over time.(51B)
Terpenes that interact with COX-2: (-)-α-bisabolol is a COX-2 modulator,(62D) geraniol is a COX-2 inhibitor,(77D) carvacrol is a COX-2 inhibitor,(18E) eugenol is a COX-2 modulator or expression inhibitor.(68E)
Suppression of Tryptophan Degradation
CBD and Delta 9 THC suppresses the breakdown of tryptophan and the formation of neopterin. This action is independent of CB1 or CB2 activation, and may lead to the increased availability of tryptophan which later could be used for biosynthesis into serotonin. The increased levels of tryptophan could improve mood,(32B) depression, sleep disorders, anxiety, neurodegenerative diseases, and help correct the functionality of the brain-gut axis and immunology. The increase in serotonin biosynthesis from tryptophan could have a role in helping with autism spectrum disorder, obesity, anorexia and bulimia nervosa; which all have an association with reduced levels of serotonin.(33B)
As mentioned in the first sentence, CBD and Delta 9 THC can reduce the formation of neopterin, and that is used as a marker for certain types of infection and inflammation. There is no current research to show what exactly happens if the formation of neopterin is reduced.
Phospholipase A2 Modulator
THC, CBD, CBN, and CBG modulates phospholipase A2 depending on the concentrations. CBD and CBG have specific EC and IC values that are found online, while THC and CBN don’t show their specific values. The original journal shows that THC, CBD, CBN, and CBG show activation with an EC(50) at a range of 6.0-20.0 X 10(-6) M and IC(50) values in the range 50.0-150.0 X 10(-6) M.(34B)
CBD - EC(50) at 6.4 mM; IC(50) at 134 mM(70A)
CBG - EC(50) at 9.5 mM; IC(50) at 55 mM(70A)
Phospholipase 2 (PLA 2) inhibition was shown to be neuroprotective in injuries related to cerebral ischemia and reperfusion.(35B) There was about a 4 times increase in PLA 2 in the brains of people with Alzheimer’s disease. There is a correlation between sPLA2-IIA in reactive astrocytes around the amyloid plaques in Alzheimer’s disease.(36B)
Acetylcholinesterase inhibitor
Acetylcholinesterase inhibitors are used in treating dementia, Alzheimer’s Disease, cholinergic poisoning, and Myasthenia Gravis. They block the normal breakdown of acetylcholine into acetate and choline and increase both the levels and duration of actions of acetylcholine found in the central and peripheral nervous system. These medications will increase the parasympathetic response from the extra acetylcholine, which affects the vagus nerve.(10C)
Overstimulation of the parasympathetic nervous system, such as increased hypermotility, hypersecretion, bradycardia, miosis, diarrhea, and hypotension. They should not be used in people with certain health problems such as bradycardia, and heart conditions like AV block.(10C) Donepezil, rivastigmine and galantamine are common prescription acetylcholinesterase inhibitors.(11C)
Terpenes that are Acetylcholinesterase inhibitors (37E,52C)

Cholinergic system - Acetylcholine Muscarinic receptors
Acetylcholine (ACh) binds to nicotinic and muscarinic receptors. ACh is synthesized in the cytoplasm of cells by the enzyme choline acetyltransferase (ChAT) from choline and acetyl-CoA. The vesicular acetylcholine transporter (VAChT) moves ACh into the synaptic vesicles. After depolarization, ACh leaves the vesicles into the synaptic cleft, and this is where it can bind to receptors. ACh in the synaptic cleft will be broken down by the enzyme, acetylcholinesterase (AChE), and turn ACh into choline and acetate; which are moved into the presynaptic nerve terminal by the high-affinity choline transporter (CHT1) for recycling. In Alzheimer’s disease, cholinergic neurons are severely lost in the basal forebrain.(42C)
There are 5 subtypes of muscarinic receptors (M1-M5). (43C)
Brain - All five are in the brain, while the M1 receptor seems to be the one responsible for anticholinergic reactions such as delirium, cognitive impairment, dizziness, sedation, and confusion.(43C)
Eye - All five subtypes are in the eye, but the M3 is the most widely expressed. When ACh interacts with M3 in the eye, it will cause the pupil to constrict (Miosis). Anticholinergic activity and toxicity with this receptor can cause blurred vision and an improperly-times dilation of the pupils (Mydriasis). (43C)
Salivary glands - M1 and M3 are expressed in the salivary glands. ACh will increase salivation, while anticholinergic activity will cause dry mouth and difficulty swallowing from decreased salivation. (43C)
Sweat glands - M3 is the dominant muscarinic receptor of sweat glands. ACh will increase sweating, while anticholinergics decrease sweating which decreases our ability to dissipate heat. (43C)
Heart - M2 is widely expressed in the heart. ACh can slow down the heart rate, and heart contractility. Anticholinergics can increase the heart rate (sinus tachycardia), and increase contractility. (43C)
Lungs - M1-M4 are expressed throughout the lungs. They are not typically associated with anticholinergic reactions.(43C) Increased ACh in the lungs will cause bronchoconstriction. Anticholinergics like atropine, can prevent bronchoconstriction from cold air inhalation in a dose-dependent manner. (44C)
Gastrointestinal - M2 and M3 are expressed in the gastrointestinal system. Increased ACh will increase gastric motility. Anticholinergics will slow down gastric motility, and can lead to gastric stasis and constipation.(43C)
Bladder - M2 and M3 are found in the bladder. M3 is responsible for detrusor and bladder contractions. M2 may be involved with detrusor relaxation, but that role is still unclear. Anticholinergics can cause the bladder to be unable to contract leading to urinary stasis and retention.(43C) Increased ACh can cause an overactive bladder.(45C)
Skin - M3 is the main muscarinic receptor in the skin. The vascular endothelium reacts to ACh in opposite ways. ACh interacting with muscarinic receptors in the endothelium can cause vasodilation, while ACh binding to nicotinic receptors in the endothelium can cause vasoconstriction. This is also influenced by other factors like norepinephrine. Anticholinergic reactions often cause vasodilation, and reduce the body’s ability to dissipate heat.(43C)
Alpha7 subunit nicotinic acetylcholine receptor (α7 nAChR)
The Alpha7 subunit nicotinic acetylcholine receptor (α7 nAChR) is highly expressed in the hippocampus, hypothalamus, and the immune system. These receptors are activated by choline. There is a decreased expression of nAChRs in the brain with cognitive disorders like Alzheimer disease, Parkinson disease, Lewy-body dementia, and schizophrenia.(39E)
Agonists targeting α7 nAChRs have shown potential for treating the cognitive disorders mentioned above, as well as conditions like inflammation and sepsis. However, these agonists are primarily studied in research settings and are not yet available for clinical use.(40E)
Thymol (from thyme) and Carvacrol (from oregano) are α7 nAChR inhibitors.(17E) Based on research, agonists are beneficial for neurodegenerative disorders, but there is no research on inhibiting that receptor. People don’t normally ingest isolated forms of thymol and carvacrol, but that could potentially cause some problems if someone did that had neurodegeneration. Thyme and oregano are full of health benefits, but if someone with neurodegeneration feels weird or like their brain is turning off with eating too much of those herbs, then that would likely be due to the inhibition of α7 nAChR.
Muscarinic Acetylcholine M3 Receptor (CHRM3)
CHRM3 receptor acts on the protein kinase B (PKB/AKT)/mitogen-activated protein kinase (MAPK) pathway, which has neuroprotective benefits. The terpene geraniol acts on the CHRM3 receptor.(76D)
Anticholinergic
Alpha-Terpineol is an anticholinergic.(11D) Anticholinergic medications include Scopolamine for treating nausea and vomiting, Benztropine and trihexyphenidyl for reducing dopamine levels and relieve symptoms of Parkinson disease, and atropine for pupil dilation. Side effects or toxicity of anticholinergics include rapid heart rate, arrhythmias, urinary retention, blurred vision, constipation, reduced gut motility, hyperthermia, and inhibition of sweating.(35C)
Other cholinergic actions of terpenes
Linalool inhibits the release of Acetylcholine (ACh) at the neuromuscular junction. A local anesthetic reaction occurs due to the reduction of the channel open time.(55C) (See the linalool section for more detail)
Cannabinoid receptors on immune cells
These receptors are pharmacological targets that cannabinoids and some terpenes will modulate.
Below is an illustration to depict these receptors.
-
NK-cells CB1 (77A), CB2 (80A), TRPV2 (35A)
-
Macrophage CB1 (77A,78A), CB2 (80A), TRPA1 (91E), TRPV1 (92E), TRPV2 (35A), TRPV4 (93E)
-
Dendritic - CB1 (77A,78A), CB2 (80A), TRPA1, TRPV1 (92E), TRPV2 (35A)
-
CD4 T-cell - CB1 (77A), CB2 (80A), TRPA1 (94E), TRPV2 (35A), TRPM8 (95E)
-
B-cells - CB1 (77A,78A), CB2 (80A), TRPV2 (35A)
-
Monocytes - CB1 (77A,78A), CB2 (80A), TRPV1 (92E), TRPV2 (35A)
-
Neutrophil - CB1 (77A,78A), CB2 (80A), TRPV2 (35A)
-
Eosinophils - CB1 (77A,78A), CB2 (80A), TRPA1 (96E), TRPV2 (35A)
-
Mast Cells - TRPA1 (96E), TRPV2 (35A)


Sources
1A. Alvarado MG, Thakore P, Earley S. Transient Receptor Potential Channel Ankyrin 1: A Unique Regulator of Vascular Function. Cells. 2021 May 11;10(5):1167. doi: 10.3390/cells10051167. PMID: 34064835; PMCID: PMC8151290.
2A. Watanabe H., Vriens J., Prenen J., Droogmans G., Voets T., Nillus B. (2003). Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424, 434–438. 10.1038/nature01807
3A. Muller C, Morales P, Reggio PH. Cannabinoid Ligands Targeting TRP Channels. Front Mol Neurosci. 2019 Jan 15;11:487. doi: 10.3389/fnmol.2018.00487. PMID: 30697147; PMCID: PMC6340993.
4A. De Petrocellis L., Orlando P., Moriello A. S., Aviello G., Stott C., Izzo A. A., et al.. (2012a). Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta Physiol. 204, 255–266. 10.1111/j.1748-1716.2011.02338.x
5A. Hu F, Song X, Long D. Transient receptor potential ankyrin 1 and calcium: Interactions and association with disease (Review). Exp Ther Med. 2021 Dec;22(6):1462. doi: 10.3892/etm.2021.10897. Epub 2021 Oct 20. PMID: 34737802; PMCID: PMC8561754.
6A. Cordero-Morales, J. F., Gracheva, E. O., & Julius, D. (2011). Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proceedings of the National Academy of Sciences, 108(46), E1184-E1191. https://doi.org/10.1073/pnas.1114124108
7A. Bang S, Kim KY, Yoo S, Kim YG, Hwang SW. Transient receptor potential A1 mediates acetaldehyde-evoked pain sensation. Eur J Neurosci. 2007 Nov;26(9):2516-23. doi: 10.1111/j.1460-9568.2007.05882.x. Epub 2007 Oct 23. PMID: 17970723.
8A. Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, Cravatt B, Corey DP, Patapoutian A. An ion channel essential for sensing chemical damage. J Neurosci. 2007 Oct 17;27(42):11412-5. doi: 10.1523/JNEUROSCI.3600-07.2007. PMID: 17942735; PMCID: PMC6673017.
9A. McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM. TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13525-30. doi: 10.1073/pnas.0705924104. Epub 2007 Aug 8. PMID: 17686976; PMCID: PMC1941642.
10A. Taylor-Clark TE, McAlexander MA, Nassenstein C, Sheardown SA, Wilson S, Thornton J, Carr MJ, Undem BJ. Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal. J Physiol. 2008 Jul 15;586(14):3447-59. doi: 10.1113/jphysiol.2008.153585. Epub 2008 May 22. PMID: 18499726; PMCID: PMC2538817.
11A. Andersson DA, Gentry C, Moss S, Bevan S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci. 2008 Mar 5;28(10):2485-94. doi: 10.1523/JNEUROSCI.5369-07.2008. PMID: 18322093; PMCID: PMC2709206.
12A. Hinman A, Chuang HH, Bautista DM, Julius D. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19564-8. doi: 10.1073/pnas.0609598103. Epub 2006 Dec 12. PMID: 17164327; PMCID: PMC1748265.
13A. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 2004 Mar 25;41(6):849-57. doi: 10.1016/s0896-6273(04)00150-3. PMID: 15046718.
14A. GeneCards. (n.d.).TRPA1 Gene - GeneCards | The Human Gene Database. Retrieved 9/26/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPA1&keywords=TRPA1
15A. Terada Y, Yamashita R, Ihara N, Yamazaki-Ito T, Takahashi Y, Masuda H, Sakuragawa S, Ito S, Ito K, Watanabe T. Human TRPA1 activation by terpenes derived from the essential oil of daidai, Citrus aurantium L. var. daidai Makino. Biosci Biotechnol Biochem. 2019 Sep;83(9):1721-1728. doi: 10.1080/09168451.2019.1611405. Epub 2019 May 10. PMID: 31072263.
16A. Molot J, Sears M, Anisman H. Multiple chemical sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev. 2023 Aug;151:105227. doi: 10.1016/j.neubiorev.2023.105227. Epub 2023 May 10. PMID: 37172924.
17A. Faris P, Rumolo A, Pellavio G, Tanzi M, Vismara M, Berra-Romani R, Gerbino A, Corallo S, Pedrazzoli P, Laforenza U, Montagna D, Moccia F. Transient receptor potential ankyrin 1 (TRPA1) mediates reactive oxygen species-induced Ca2+ entry, mitochondrial dysfunction, and caspase-3/7 activation in primary cultures of metastatic colorectal carcinoma cells. Cell Death Discov. 2023 Jul 1;9(1):213. doi: 10.1038/s41420-023-01530-x. PMID: 37393347; PMCID: PMC10314907.
18A. Zhai K, Liskova A, Kubatka P, Büsselberg D. Calcium Entry through TRPV1: A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells. Int J Mol Sci. 2020 Jun 11;21(11):4177. doi: 10.3390/ijms21114177. PMID: 32545311; PMCID: PMC7312732.
19A. De Petrocellis L., Ligresti A., Moriello A. S., Allarà M., Bisogno T., Petrosino S., et al.. (2011b). Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 163, 1479–1494. 10.1111/j.1476-5381.2010.01166.x
20A. Lowin T., Straub R. H. (2015). Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis. Arthritis Res. Ther. 17:226. 10.1186/s13075-015-0743-x
21A. Petrosino S., Schiano Moriello A., Cerrato S., Fusco M., Puigdemont A., De Petrocellis L., et al.. (2016). The anti-inflammatory mediator palmitoylethanolamide enhances the levels of 2-arachidonoyl-glycerol and potentiates its actions at TRPV1 cation channels. Br. J. Pharmacol. 173, 1154–1162. 10.1111/bph.13084
22A. Taylor-Clark TE, McAlexander MA, Nassenstein C, Sheardown SA, Wilson S, Thornton J, Carr MJ, Undem BJ. Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal. J Physiol. 2008 Jul 15;586(14):3447-59. doi: 10.1113/jphysiol.2008.153585. Epub 2008 May 22. PMID: 18499726; PMCID: PMC2538817.
23A. GeneCards. (n.d.).TRPV1 Gene - GeneCards | The Human Gene Database. Retrieved 9/26/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPV1
24A. Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V. TRPV1: A Potential Drug Target for Treating Various Diseases. Cells. 2014 May 23;3(2):517-45. doi: 10.3390/cells3020517. PMID: 24861977; PMCID: PMC4092862.
25A. Munjuluri S, Wilkerson DA, Sooch G, Chen X, White FA, Obukhov AG. Capsaicin and TRPV1 Channels in the Cardiovascular System: The Role of Inflammation. Cells. 2021 Dec 22;11(1):18. doi: 10.3390/cells11010018. PMID: 35011580; PMCID: PMC8750852.
26A. Omari SA, Adams MJ, Geraghty DP. TRPV1 Channels in Immune Cells and Hematological Malignancies. Adv Pharmacol. 2017;79:173-198. doi: 10.1016/bs.apha.2017.01.002. Epub 2017 Mar 21. PMID: 28528668.
27A. Chen K, Neu A, Howard AL, Földy C, Echegoyen J, Hilgenberg L, Smith M, Mackie K, Soltesz I. Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures. J Neurosci. 2007 Jan 3;27(1):46-58. doi: 10.1523/JNEUROSCI.3966-06.2007. PMID: 17202471; PMCID: PMC6672287.
28A. Gibson HE, Edwards JG, Page RS, Van Hook MJ, Kauer JA. TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron. 2008 Mar 13;57(5):746-59. doi: 10.1016/j.neuron.2007.12.027. PMID: 18341994; PMCID: PMC2698707.
29A. MalaCards. (n.d.) Pulpitis. Human Disease Database. Retrieved 9/26/2024 from https://www.malacards.org/card/pulpitis
30A. MalaCards. (n.d.) Cystinosis, Nephropathic. Human Disease Database. Retrieved 9/26/2024 from https://www.malacards.org/card/cystinosis_nephropathic
31A. GeneCards. (n.d.).TRPV1 Gene - GeneCards | The Human Gene Database. Retrieved 9/26/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPV1
32A. GeneCards. (n.d.).TRPV2 Gene - GeneCards | The Human Gene Database. Retrieved 10/08/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPV2#:~:text=GeneCards%20Summary%20for%20TRPV2%20Gene,Renal%20Pelvis%20Transitional%20Cell%20Carcinoma.
33A. Kojima I, Nagasawa M. TRPV2. Handb Exp Pharmacol. 2014;222:247-72. doi: 10.1007/978-3-642-54215-2_10. PMID: 24756709.
34A. Siveen KS, Nizamuddin PB, Uddin S, Al-Thani M, Frenneaux MP, Janahi IA, Steinhoff M, Azizi F. TRPV2: A Cancer Biomarker and Potential Therapeutic Target. Dis Markers. 2020 Dec 10;2020:8892312. doi: 10.1155/2020/8892312. PMID: 33376561; PMCID: PMC7746447.
35A. Santoni G, Farfariello V, Liberati S, Morelli MB, Nabissi M, Santoni M, Amantini C. The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses. Front Immunol. 2013 Feb 14;4:34. doi: 10.3389/fimmu.2013.00034. PMID: 23420671; PMCID: PMC3572502.
36A. Kalinovskii AP, Utkina LL, Korolkova YV, Andreev YA. TRPV3 Ion Channel: From Gene to Pharmacology. Int J Mol Sci. 2023 May 11;24(10):8601. doi: 10.3390/ijms24108601. PMID: 37239947; PMCID: PMC10218142.
37A. Su W, Qiao X, Wang W, He S, Liang K, Hong X. TRPV3: Structure, Diseases and Modulators. Molecules. 2023 Jan 12;28(2):774. doi: 10.3390/molecules28020774. PMID: 36677834; PMCID: PMC9865980.
38A. Sherkheli MA, Benecke H, Doerner JF, Kletke O, Vogt-Eisele AK, Gisselmann G, Hatt H. Monoterpenoids induce agonist-specific desensitization of transient receptor potential vanilloid-3 (TRPV3) ion channels. J Pharm Pharm Sci. 2009;12(1):116-28. doi: 10.18433/j37c7k. PMID: 19470296.
39A. Vogt-Eisele AK, Weber K, Sherkheli MA, Vielhaber G, Panten J, Gisselmann G, Hatt H. Monoterpenoid agonists of TRPV3. Br J Pharmacol. 2007 Jun;151(4):530-40. doi: 10.1038/sj.bjp.0707245. Epub 2007 Apr 10. PMID: 17420775; PMCID: PMC2013969.
40A. GeneCards. (n.d.).TRPV3 Gene - GeneCards | The Human Gene Database. Retrieved 9/26/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPV3&keywords=TRPV3
41A. Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci. 2006 May;9(5):628-35. doi: 10.1038/nn1692. Epub 2006 Apr 16. PMID: 16617338.
42A. Murphy TV, Kanagarajah A, Toemoe S, Bertrand PP, Grayson TH, Britton FC, Leader L, Senadheera S, Sandow SL. TRPV3 expression and vasodilator function in isolated uterine radial arteries from non-pregnant and pregnant rats. Vascul Pharmacol. 2016 Aug;83:66-77. doi: 10.1016/j.vph.2016.04.004. Epub 2016 Apr 9. PMID: 27073026.
43A. Martin LS, Josset-Lamaugarny A, El Jammal T, Ducreux S, Chevalier FP, Fromy B. Aging is associated with impaired triggering of TRPV3-mediated cutaneous vasodilation: a crucial process for local heat exposure. Geroscience. 2024 Aug;46(4):3567-3580. doi: 10.1007/s11357-023-00981-5. Epub 2023 Oct 19. PMID: 37855862; PMCID: PMC11226586.
44A. GeneCards. (n.d.).TRPV4 Gene - GeneCards | The Human Gene Database. Retrieved 10/09/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPV4
45A. Chaigne S, Barbeau S, Ducret T, Guinamard R, Benoist D. Pathophysiological Roles of the TRPV4 Channel in the Heart. Cells. 2023 Jun 17;12(12):1654. doi: 10.3390/cells12121654. PMID: 37371124; PMCID: PMC10296986.
46A. Baratchi S, Keov P, Darby WG, Lai A, Khoshmanesh K, Thurgood P, Vahidi P, Ejendal K, McIntyre P. The TRPV4 Agonist GSK1016790A Regulates the Membrane Expression of TRPV4 Channels. Front Pharmacol. 2019 Jan 23;10:6. doi: 10.3389/fphar.2019.00006. PMID: 30728775; PMCID: PMC6351496.
47A. Kumar H, Lim CS, Choi H, Joshi HP, Kim KT, Kim YH, Park CK, Kim HM, Han IB. Elevated TRPV4 Levels Contribute to Endothelial Damage and Scarring in Experimental Spinal Cord Injury. J Neurosci. 2020 Feb 26;40(9):1943-1955. doi: 10.1523/JNEUROSCI.2035-19.2020. Epub 2020 Jan 23. PMID: 31974206; PMCID: PMC7046444.
48A. Dunn KM, Hill-Eubanks DC, Liedtke WB, Nelson MT. TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6157-62. doi: 10.1073/pnas.1216514110. Epub 2013 Mar 25. PMID: 23530219; PMCID: PMC3625327.
49A. Liao J, Yang ST, Lu K, Lu Y, Wu YW, DU YM. [Oral administration of TRPV4 inhibitor improves atrial calcium handling abnormalities in sterile pericarditis rats]. Sheng Li Xue Bao. 2022 Apr 25;74(2):188-200. Chinese. PMID: 35503066.
50A. Liao J, Wu Q, Qian C, Zhao N, Zhao Z, Lu K, Zhang S, Dong Q, Chen L, Li Q, Du Y. TRPV4 blockade suppresses atrial fibrillation in sterile pericarditis rats. JCI Insight. 2020 Dec 3;5(23):e137528. doi: 10.1172/jci.insight.137528. PMID: 33119551; PMCID: PMC7714415.
51A. Everaerts W, Nilius B, Owsianik G. The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog Biophys Mol Biol. 2010 Sep;103(1):2-17. doi: 10.1016/j.pbiomolbio.2009.10.002. Epub 2009 Oct 14. PMID: 19835908.
52A. Darby WG, Grace MS, Baratchi S, McIntyre P. Modulation of TRPV4 by diverse mechanisms. Int J Biochem Cell Biol. 2016 Sep;78:217-228. doi: 10.1016/j.biocel.2016.07.012. Epub 2016 Jul 15. PMID: 27425399.
53A. Scheraga RG, Southern BD, Grove LM, Olman MA. The Role of TRPV4 in Regulating Innate Immune Cell Function in Lung Inflammation. Front Immunol. 2020 Jun 26;11:1211. doi: 10.3389/fimmu.2020.01211. PMID: 32676078; PMCID: PMC7333351.
54A. De Petrocellis L., Starowicz K., Moriello A. S., Vivese M., Orlando P., Di Marzo V. (2007). Regulation of transient receptor potential channels of melastatin type 8 (TRPM8): effect of cAMP, cannabinoid CB1 receptors and endovanilloids. Exp. Cell Res. 313, 1911–1920. 10.1016/j.yexcr.2007.01.008
55A. GeneCards. (n.d.).TRPM8 Gene - GeneCards | The Human Gene Database. Retrieved 10/09/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRPM8
56A. Borrelli F, Pagano E, Romano B, Panzera S, Maiello F, Coppola D, De Petrocellis L, Buono L, Orlando P, Izzo AA. Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid. Carcinogenesis. 2014 Dec;35(12):2787-97. doi: 10.1093/carcin/bgu205. Epub 2014 Sep 30. PMID: 25269802
57A. Liu Y, Leng A, Li L, Yang B, Shen S, Chen H, Zhu E, Xu Q, Ma X, Shi P, Liu Y, Liu T, Li L, Li K, Zhang D, Xiao J. AMTB, a TRPM8 antagonist, suppresses growth and metastasis of osteosarcoma through repressing the TGFβ signaling pathway. Cell Death Dis. 2022 Mar 31;13(3):288. doi: 10.1038/s41419-022-04744-6. PMID: 35361751; PMCID: PMC8971393.
58A. Xu Q, Kong N, Zhang J, Bai N, Bi J, Li W. Expression of transient receptor potential cation channel subfamily M member 8 in gastric cancer and its clinical significance. Exp Ther Med. 2021 Apr;21(4):377. doi: 10.3892/ etm.2021.9808. Epub 2021 Feb 19. PMID: 33680099; PMCID: PMC7918222.
59A. Lan X, Zhao J, Song C, Yuan Q, Liu X. TRPM8 facilitates proliferation and immune evasion of esophageal cancer cells. Biosci Rep. 2019 Oct 30;39(10):BSR20191878. doi: 10.1042/BSR20191878. PMID: 31519770; PMCID: PMC6822499.
60A. Okamoto Y, Ohkubo T, Ikebe T, Yamazaki J. Blockade of TRPM8 activity reduces the invasion potential of oral squamous carcinoma cell lines. Int J Oncol. 2012 May;40(5):1431-40. doi: 10.3892/ijo.2012.1340. Epub 2012 Jan 20. PMID: 22267123.
61A. Mergler S, Derckx R, Reinach PS, Garreis F, Böhm A, Schmelzer L, Skosyrski S, Ramesh N, Abdelmessih S, Polat OK, Khajavi N, Riechardt AI. Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells. Cell Signal. 2014 Jan;26(1):56-69. doi: 10.1016/j.cellsig.2013.09.017. Epub 2013 Sep 29. PMID: 24084605.
62A. Kijpornyongpan T, Sereemaspun A, Chanchao C. Dose-dependent cytotoxic effects of menthol on human malignant melanoma A-375 cells: correlation with TRPM8 transcript expression. Asian Pac J Cancer Prev. 2014;15(4):1551-6. doi: 10.7314/apjcp.2014.15.4.1551. PMID: 24641366.
63A. Li Q, Wang X, Yang Z, Wang B, Li S. Menthol induces cell death via the TRPM8 channel in the human bladder cancer cell line T24. Oncology. 2009;77(6):335-41. doi: 10.1159/000264627. Epub 2009 Dec 2. PMID: 19955836.
64A. Klumpp D, Frank SC, Klumpp L, Sezgin EC, Eckert M, Edalat L, Bastmeyer M, Zips D, Ruth P, Huber SM. TRPM8 is required for survival and radioresistance of glioblastoma cells. Oncotarget. 2017 Sep 30;8(56):95896-95913. doi: 10.18632/oncotarget.21436. PMID: 29221175; PMCID: PMC5707069.
65A. Valero ML, Mello de Queiroz F, Stühmer W, Viana F, Pardo LA. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells. PLoS One. 2012;7(12):e51825. doi: 10.1371/journal.pone.0051825. Epub 2012 Dec 14. PMID: 23251635; PMCID: PMC3522609.
66A. Tsavaler L, Shapero MH, Morkowski S, Laus R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 2001 May 1;61(9):3760-9. PMID: 11325849.
67A. Fakih D, Baudouin C, Réaux-Le Goazigo A, Mélik Parsadaniantz S. TRPM8: A Therapeutic Target for Neuroinflammatory Symptoms Induced by Severe Dry Eye Disease. Int J Mol Sci. 2020 Nov 19;21(22):8756. doi: 10.3390/ ijms21228756. PMID: 33228217; PMCID: PMC7699525. https://www.ncbi.nlm.nih.gov/gene/79054 4/22/2024
68A. Hemida AS, Hammam MA, Heriz NAEM, Shehata WA. Expression of Transient Receptor Potential Channel of Melastatin number 8 (TRPM8) in Non- Melanoma Skin Cancer: A Clinical and Immunohistochemical study. J Immunoassay Immunochem. 2021 Nov 2;42(6):620-632. doi: 10.1080/15321819.2021.1918709. Epub 2021 Apr 25. PMID: 33896372.
69A. Reggio PH. Endocannabinoid binding to the cannabinoid receptors: what is known and what remains unknown. Curr Med Chem. 2010;17(14):1468-86. doi: 10.2174/092986710790980005. PMID: 20166921; PMCID: PMC4120766.
70A. Izzo, A. A., Borrelli, F., Capasso, R., Di Marzo, V., & Mechoulam, R. (2009). Non-psychotropic plant cannabinoids: New therapeutic opportunities from an ancient herb. Trends in Pharmacological Sciences, 30(10), 515- 527
71A. Morales P, Hurst DP, Reggio PH. Molecular Targets of the Phytocannabinoids: A Complex Picture. Prog Chem Org Nat Prod. 2017;103:103-131. doi: 10.1007/978-3-319-45541-9_4. PMID: 28120232; PMCID: PMC5345356.
72A. Jha NK, Sharma C, Hashiesh HM, Arunachalam S, Meeran MN, Javed H, Patil CR, Goyal SN, Ojha S. β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid can be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19. Front Pharmacol. 2021 May 14;12:590201. doi: 10.3389/fphar.2021.590201. PMID: 34054510; PMCID: PMC8163236.
73A. Udoh M, Santiago M, Devenish S, McGregor IS, Connor M. Cannabichromene is a cannabinoid CB2 receptor agonist. Br J Pharmacol. 2019 Dec;176(23):4537-4547. doi: 10.1111/bph.14815. Epub 2019 Nov 21. PMID: 31368508; PMCID: PMC6932936.
74A. GeneCards. (n.d.). CNR1 Gene - GeneCards | The Human Gene Database. Retrieved 10/10/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=CNR1&keywords=CB1
75A. GeneCards. (n.d.). CNR2 Gene - GeneCards | The Human Gene Database. Retrieved 10/10/2024 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=CNR2&keywords=CB2
76A. Kaur R, Sidhu P, Singh S. What failed BIA 10-2474 Phase I clinical trial? Global speculations and recommendations for future Phase I trials. J Pharmacol Pharmacother. 2016 Jul-Sep;7(3):120-6. doi: 10.4103/0976-500X.189661. PMID: 27651707; PMCID: PMC5020770.
77A. Kaplan BL. The role of CB1 in immune modulation by cannabinoids. Pharmacol Ther. 2013 Mar;137(3):365-74. doi: 10.1016/j.pharmthera.2012.12.004. Epub 2012 Dec 20. PMID: 23261520.
78A. Aristizábal B, González Á. Innate immune system. In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A, et al., editors. Autoimmunity: From Bench to Bedside [Internet]. Bogota (Colombia): El Rosario University Press; 2013 Jul 18. Chapter 2. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459455/
79A. Gaffal E, Kemter AM, Scheu S, Leite Dantas R, Vogt J, Baune B, Tüting T, Zimmer A, Alferink J. Cannabinoid Receptor 2 Modulates Maturation of Dendritic Cells and Their Capacity to Induce Hapten-Induced Contact Hypersensitivity. Int J Mol Sci. 2020 Jan 11;21(2):475. doi: 10.3390/ijms21020475. PMID: 31940843; PMCID: PMC7013892.
80A. Galiègue S, Mary S, Marchand J, Dussossoy D, Carrière D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem. 1995 Aug 15;232(1):54-61. doi: 10.1111/j.1432-1033.1995.tb20780.x. PMID: 7556170.
81A. Tortora C, Di Paola A, Argenziano M, Creoli M, Marrapodi MM, Cenni S, Tolone C, Rossi F, Strisciuglio C. Effects of CB2 Receptor Modulation on Macrophage Polarization in Pediatric Celiac Disease. Biomedicines. 2022 Apr 9;10(4):874. doi: 10.3390/biomedicines10040874. PMID: 35453624; PMCID: PMC9029516.
82A. Alger BE. Getting high on the endocannabinoid system. Cerebrum. 2013 Nov 1;2013:14. PMID: 24765232; PMCID: PMC3997295.
83A. Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2699-704. doi: 10.1073/pnas.0711278105. Epub 2008 Feb 8. PMID: 18263732; PMCID: PMC2268199.
84A. Haley JE, Abogadie FC, Delmas P, Dayrell M, Vallis Y, Milligan G, Caulfield MP, Brown DA, Buckley NJ. The alpha subunit of Gq contributes to muscarinic inhibition of the M-type potassium current in sympathetic neurons. J Neurosci. 1998 Jun 15;18(12):4521-31. doi: 10.1523/JNEUROSCI.18-12-04521.1998. PMID: 9614229; PMCID: PMC6792692.
85A. Dennis SH, Pasqui F, Colvin EM, Sanger H, Mogg AJ, Felder CC, Broad LM, Fitzjohn SM, Isaac JT, Mellor JR. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus. Cereb Cortex. 2016 Jan;26(1):414-26. doi: 10.1093/cercor/bhv227. Epub 2015 Oct 15. PMID: 26472558; PMCID: PMC4677984.
86A. Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008 Jan;153(2):199-215. doi: 10.1038/sj.bjp.0707442. Epub 2007 Sep 10. PMID: 17828291; PMCID: PMC2219532.
87A. Stančić A, Jandl K, Hasenöhrl C, Reichmann F, Marsche G, Schuligoi R, Heinemann A, Storr M, Schicho R. The GPR55 antagonist CID16020046 protects against intestinal inflammation. Neurogastroenterol Motil. 2015 Oct;27(10):1432-45. doi: 10.1111/nmo.12639. Epub 2015 Jul 30. PMID: 26227635; PMCID: PMC4587547.
88A. Liu Q, Yu J, Li X, Guo Y, Sun T, Luo L, Ren J, Jiang W, Zhang R, Yang P, Yang Q. Cannabinoid receptor GPR55 activation blocks nicotine use disorder by regulation of AMPAR phosphorylation. Psychopharmacology (Berl). 2021 Nov;238(11):3335-3346. doi: 10.1007/s00213-021-05949-x. Epub 2021 Oct 14. PMID: 34648060.
89A. Patricio F, Morales Dávila E, Patricio-Martínez A, Arana Del Carmen N, Martínez I, Aguilera J, Perez-Aguilar JM, Limón ID. Intrapallidal injection of cannabidiol or a selective GPR55 antagonist decreases motor asymmetry and improves fine motor skills in hemiparkinsonian rats. Front Pharmacol. 2022 Sep 2;13:945836. doi: 10.3389/fphar.2022.945836. PMID: 36120297; PMCID: PMC9479130.
90A. Dhaliwal A, Gupta M. Physiology, Opioid Receptor. [Updated 2023 Jul 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK546642/
91A. Kathmann M, Flau K, Redmer A, Tränkle C, Schlicker E. Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors. Naunyn Schmiedebergs Arch Pharmacol. 2006 Feb;372(5):354-61. doi: 10.1007/s00210-006-0033-x. Epub 2006 Feb 18. PMID: 16489449.
92A. Theriot J, Sabir S, Azadfard M. Opioid Antagonists. [Updated 2023 Jul 21]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537079/
93A. Rao VS, Menezes AM, Viana GS. Effect of myrcene on nociception in mice. J Pharm Pharmacol. 1990
Dec;42(12):877-8. doi: 10.1111/j.2042-7158.1990.tb07046.x. PMID: 1983154.
94A. Jordan BA, Gomes I, Rios C, Filipovska J, Devi LA. Functional interactions between mu opioid and alpha 2A-adrenergic receptors. Mol Pharmacol. 2003 Dec;64(6):1317-24. doi: 10.1124/mol.64.6.1317. PMID: 14645661.
95A. Eason MG, Jacinto MT, Liggett SB. Contribution of ligand structure to activation of alpha 2-adrenergic receptor subtype coupling to Gs. Mol Pharmacol. 1994 Apr;45(4):696-702. PMID: 7910371.
96A. Niemi G, Breivik H. Adrenaline markedly improves thoracic epidural analgesia produced by a low-dose infusion of bupivacaine, fentanyl and adrenaline after major surgery. A randomised, double-blind, cross-over study with and without adrenaline. Acta Anaesthesiol Scand. 1998 Sep;42(8):897-909. doi: 10.1111/j.1399-6576.1998.tb05348.x. PMID: 9773133.
97A. Fujita W, Gomes I, Dove LS, Prohaska D, McIntyre G, Devi LA. Molecular characterization of eluxadoline as a potential ligand targeting mu-delta opioid receptor heteromers. Biochem Pharmacol. 2014 Dec 1;92(3):448-56. doi: 10.1016/j.bcp.2014.09.015. Epub 2014 Sep 28. PMID: 25261794; PMCID: PMC4769596.
98A. Kumar R, Viswanath O, Saadabadi A. Buprenorphine. [Updated 2024 Jun 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459126/
99A. Kopecky BJ, Liang R, Bao J. T-type calcium channel blockers as neuroprotective agents. Pflugers Arch. 2014 Apr;466(4):757-65. doi: 10.1007/s00424-014-1454-x. Epub 2014 Feb 25. PMID: 24563219; PMCID: PMC4005039.
1B. Huguenard JR. Block of T -Type Ca(2+) Channels Is an Important Action of Succinimide Antiabsence Drugs. Epilepsy Curr. 2002 Mar;2(2):49-52. doi: 10.1111/j.1535-7597.2002.00019.x. PMID: 15309165; PMCID: PMC320968.
2B. Powell KL, Cain SM, Snutch TP, O'Brien TJ. Low threshold T-type calcium channels as targets for novel epilepsy treatments. Br J Clin Pharmacol. 2014 May;77(5):729-39. doi: 10.1111/bcp.12205. PMID: 23834404; PMCID: PMC4004393.
3B. Ernst ME, Kelly MW. Mibefradil, a pharmacologically distinct calcium antagonist. Pharmacotherapy. 1998 May-Jun;18(3):463-85. PMID: 9620098.
4B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 60663, Mibefradil. Retrieved October 15, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Mibefradil.
5B. Chen H, Zhang D, Hua Ren J, Ping Chao S. Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes. Iran J Pharm Res. 2013 Fall;12(4):855-66. PMID: 24523765; PMCID: PMC3920693.
6B. Ge, W., & Ren, J. (2009). Combined L-/T-type calcium channel blockers: Ready for prime time. Hypertension, 53(4). https://doi.org/10.1161/HYPERTENSIONAHA.108.127548
7B. Ross HR, Napier I, Connor M. Inhibition of recombinant human T-type calcium channels by Delta9-tetrahydrocannabinol and cannabidiol. J Biol Chem. 2008 Jun 6;283(23):16124-34. doi: 10.1074/jbc.M707104200. Epub 2008 Apr 7. PMID: 18390906; PMCID: PMC3259625.
8B. Palee S, Chattipakorn S, Phrommintikul A, Chattipakorn N. PPARγ activator, rosiglitazone: Is it beneficial or harmful to the cardiovascular system? World J Cardiol. 2011 May 26;3(5):144-52. doi: 10.4330/wjc.v3.i5.144. PMID: 21666815; PMCID: PMC3110903.
9B. Singh G, Can AS, Correa R. Pioglitazone. [Updated 2023 Jul 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK544287/
10B. O'Sullivan SE, Sun Y, Bennett AJ, Randall MD, Kendall DA. Time-dependent vascular actions of cannabidiol in the rat aorta. Eur J Pharmacol. 2009 Jun 10;612(1-3):61-8. doi: 10.1016/j.ejphar.2009.03.010. Epub 2009 Mar 11. PMID: 19285060.
11B. Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011 Oct;2(4):236-40. doi: 10.4103/2231-4040.90879. PMID: 22247890; PMCID: PMC3255347.
12B. Stiedl O, Pappa E, Konradsson-Geuken Å, Ögren SO. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front Pharmacol. 2015 Aug 7;6:162. doi: 10.3389/fphar.2015.00162. PMID: 26300776; PMCID: PMC4528280.
13B. Resstel LB, Tavares RF, Lisboa SF, Joca SR, Corrêa FM, Guimarães FS. 5-HT1A receptors are involved in the cannabidiol-induced attenuation of behavioural and cardiovascular responses to acute restraint stress in rats. Br J Pharmacol. 2009 Jan;156(1):181-8. doi: 10.1111/j.1476-5381.2008.00046.x. PMID: 19133999; PMCID: PMC2697769.
14B. Banerjee P, Mehta M, Kanjilal B. The 5-HT1A Receptor: A Signaling Hub Linked to Emotional Balance. In: Chattopadhyay A, editor. Serotonin Receptors in Neurobiology. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. Chapter 7. Available from: https://www.ncbi.nlm.nih.gov/books/NBK5212/
15B. Schatzberg AF, Charles D. The Black Book of Psychotropic Dosing and Monitoring. Psychopharmacol Bull. 2018 Jan 15;48(1):64-153. PMID: 29382960; PMCID: PMC5765435.
16B. Montalbano A, Mlinar B, Bonfiglio F, Polenzani L, Magnani M, Corradetti R. Dual inhibitory action of trazodone on dorsal raphe serotonergic neurons through 5-HT1A receptor partial agonism and α1-adrenoceptor antagonism. PLoS One. 2019 Sep 26;14(9):e0222855. doi: 10.1371/journal.pone.0222855. PMID: 31557210; PMCID: PMC6763016.
17B. DrugBank. Serotonin 5HT1A antagonists. Retrieved 10/17/2024 from https://go.drugbank.com/categories/DBCAT005166.
18B. Celada P, Puig M, Amargós-Bosch M, Adell A, Artigas F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci. 2004 Jul;29(4):252-65. PMID: 15309042; PMCID: PMC446220.
19B. Chu A, Wadhwa R. Selective Serotonin Reuptake Inhibitors. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554406/
20B. Sabri MA, Saber-Ayad MM. MAO Inhibitors. [Updated 2023 Jun 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557395/
21B. Moraczewski J, Awosika AO, Aedma KK. Tricyclic Antidepressants. [Updated 2023 Aug 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557791/
22B. Carrier EJ, Auchampach JA, Hillard CJ. Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci U S A. 2006 May 16;103(20):7895-900. doi: 10.1073/pnas.0511232103. Epub 2006 May 3. PMID: 16672367; PMCID: PMC1472541.
23B. Martinez Naya N, Kelly J, Corna G, Golino M, Abbate A, Toldo S. Molecular and Cellular Mechanisms of Action of Cannabidiol. Molecules. 2023 Aug 9;28(16):5980. doi: 10.3390/molecules28165980. PMID: 37630232; PMCID: PMC10458707.
24B. Allahham M, Lerman A, Atar D, Birnbaum Y. Why Not Dipyridamole: a Review of Current Guidelines and Re-evaluation of Utility in the Modern Era. Cardiovasc Drugs Ther. 2022 Jun;36(3):525-532. doi: 10.1007/s10557-021-07224-9. Epub 2021 Jul 10. PMID: 34245446; PMCID: PMC8271326.
25B. Kerndt CC, Nagalli S. Dipyridamole. [Updated 2023 Jul 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554455/
26B. Wolska N, Rozalski M. Blood Platelet Adenosine Receptors as Potential Targets for Anti-Platelet Therapy. Int J Mol Sci. 2019 Nov 3;20(21):5475. doi: 10.3390/ijms20215475. PMID: 31684173; PMCID: PMC6862090.
27B. Lieu HD, Shryock JC, von Mering GO, Gordi T, Blackburn B, Olmsted AW, Belardinelli L, Kerensky RA. Regadenoson, a selective A2A adenosine receptor agonist, causes dose-dependent increases in coronary blood flow velocity in humans. J Nucl Cardiol. 2007 Jul;14(4):514-20. doi: 10.1016/j.nuclcard.2007.02.016. PMID: 17679059.
28B. Hauser RA, Hattori N, Fernandez H, Isaacson SH, Mochizuki H, Rascol O, Stocchi F, Li J, Mori A, Nakajima Y, Ristuccia R, LeWitt P. Efficacy of Istradefylline, an Adenosine A2A Receptor Antagonist, as Adjunctive Therapy to Levodopa in Parkinson's Disease: A Pooled Analysis of 8 Phase 2b/3 Trials. J Parkinsons Dis. 2021;11(4):1663-1675. doi: 10.3233/JPD-212672. PMID: 34486986; PMCID: PMC8609697.
29B. Takeda S, Misawa K, Yamamoto I, Watanabe K. Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis. Drug Metab Dispos. 2008 Sep;36(9):1917-21. doi: 10.1124/dmd.108.020909. Epub 2008 Jun 12. PMID: 18556441.
30B. Cohen B, Preuss CV. Celecoxib. [Updated 2024 Feb 28]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK535359/
31B. Ghlichloo I, Gerriets V. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547742/
32B. Jenny M, Santer E, Pirich E, Schennach H, Fuchs D. Delta9-tetrahydrocannabinol and cannabidiol modulate mitogen-induced tryptophan degradation and neopterin formation in peripheral blood mononuclear cells in vitro. J Neuroimmunol. 2009 Feb 15;207(1-2):75-82. doi: 10.1016/j.jneuroim.2008.12.004. Epub 2009 Jan 22. PMID: 19167098.
33B. Kałużna-Czaplińska J, Gątarek P, Chirumbolo S, Chartrand MS, Bjørklund G. How important is tryptophan in human health? Crit Rev Food Sci Nutr. 2019;59(1):72-88. doi: 10.1080/10408398.2017.1357534. Epub 2017 Sep 1. PMID: 28799778.
34B. Evans AT, Formukong E, Evans FJ. Activation of phospholipase A2 by cannabinoids. Lack of correlation with CNS effects. FEBS Lett. 1987 Jan 26;211(2):119-22. doi: 10.1016/0014-5793(87)81420-5. PMID: 3803591.
35B. Wang Q, Sun AY, Pardeike J, Müller RH, Simonyi A, Sun GY. Neuroprotective effects of a nanocrystal formulation of sPLA(2) inhibitor PX-18 in cerebral ischemia/reperfusion in gerbils. Brain Res. 2009 Aug 18;1285:188-95. doi: 10.1016/j.brainres.2009.06.022. Epub 2009 Jun 13. PMID: 19527696; PMCID: PMC2742555.
36B. Sun GY, Geng X, Teng T, Yang B, Appenteng MK, Greenlief CM, Lee JC. Dynamic Role of Phospholipases A2 in Health and Diseases in the Central Nervous System. Cells. 2021 Oct 30;10(11):2963. doi: 10.3390/cells10112963. PMID: 34831185; PMCID: PMC8616333.
37B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 644019, Cannabidiol. Retrieved October 19, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Cannabidiol.
38B. Ryan D, Drysdale AJ, Lafourcade C, Pertwee RG, Platt B. Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. J Neurosci. 2009 Feb 18;29(7):2053-63. doi: 10.1523/JNEUROSCI.4212-08.2009. PMID: 19228959; PMCID: PMC6666323.
39B. Qin N, Neeper MP, Liu Y, Hutchinson TL, Lubin ML, Flores CM. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci. 2008 Jun 11;28(24):6231-8. doi: 10.1523/JNEUROSCI.0504-08.2008. PMID: 18550765; PMCID: PMC6670541.
40B. Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014 Oct;94(4):1099-142. doi: 10.1152/physrev.00034.2013. PMID: 25287861; PMCID: PMC4187032.
41B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 16078, Dronabinol. Retrieved October 20, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Dronabinol.
42B. Kumar AR, Patilea-Vrana GI, Anoshchenko O, Unadkat JD. Characterizing and Quantifying Extrahepatic Metabolism of (-)-Δ9-Tetrahydrocannabinol (THC) and Its Psychoactive Metabolite, (±)-11-Hydroxy-Δ9-THC (11-OH-THC). Drug Metab Dispos. 2022 Jun;50(6):734-740. doi: 10.1124/dmd.122.000868. Epub 2022 Apr 3. PMID: 35370140; PMCID: PMC9199115.
43B. Indigent Defense Services. (2023). Marijuana impairment FAQ. New York Cannabis Control Board. https://cannabis.ny.gov/system/files/documents/2023/05/5.4.23_guide-to-cannabis-consumption.pdf
44B. Solowij N. Do cognitive impairments recover following cessation of cannabis use? Life Sci. 1995;56(23-24):2119-26. doi: 10.1016/0024-3205(95)00197-e. PMID: 7776840.
45B. Pope HG Jr, Gruber AJ, Hudson JI, Huestis MA, Yurgelun-Todd D. Neuropsychological performance in long-term cannabis users. Arch Gen Psychiatry. 2001 Oct;58(10):909-15. doi: 10.1001/archpsyc.58.10.909. PMID: 11576028.
46B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 638026, DELTA8-Tetrahydrocannabinol. Retrieved October 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/638026.
47B. U.S. Food and Drug Administration. (n.d.). 5 things to know about Delta-8 Tetrahydrocannabinol – Delta-8 THC. Retrieved July 22, 2024 from https://www.fda.gov/consumers/consumer-updates/5-things-know-about-delta-8-tetrahydrocannabinol-delta-8-thc
48B. Palomares B, Ruiz-Pino F, Garrido-Rodriguez M, Eugenia Prados M, Sánchez-Garrido MA, Velasco I, Vazquez MJ, Nadal X, Ferreiro-Vera C, Morrugares R, Appendino G, Calzado MA, Tena-Sempere M, Muñoz E. Tetrahydrocannabinolic acid A (THCA-A) reduces adiposity and prevents metabolic disease caused by diet-induced obesity. Biochem Pharmacol. 2020 Jan;171:113693. doi: 10.1016/j.bcp.2019.113693. Epub 2019 Nov 9. PMID: 31706843.
49B. Nadal X, Del Río C, Casano S, Palomares B, Ferreiro-Vera C, Navarrete C, Sánchez-Carnerero C, Cantarero I, Bellido ML, Meyer S, Morello G, Appendino G, Muñoz E. Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity. Br J Pharmacol. 2017 Dec;174(23):4263-4276. doi: 10.1111/bph.14019. Epub 2017 Nov 2. PMID: 28853159; PMCID: PMC5731255.
50B. Kim J, Choi P, Park YT, Kim T, Ham J, Kim JC. The Cannabinoids, CBDA and THCA, Rescue Memory Deficits and Reduce Amyloid-Beta and Tau Pathology in an Alzheimer's Disease-like Mouse Model. Int J Mol Sci. 2023 Apr 6;24(7):6827. doi: 10.3390/ijms24076827. PMID: 37047798; PMCID: PMC10095267.
51B. Ben-Cnaan E, Permyakova A, Azar S, Hirsch S, Baraghithy S, Hinden L, Tam J. The Metabolic Efficacy of a Cannabidiolic Acid (CBDA) Derivative in Treating Diet- and Genetic-Induced Obesity. Int J Mol Sci. 2022 May 17;23(10):5610. doi: 10.3390/ijms23105610. PMID: 35628417; PMCID: PMC9144717.
52B. Ghovanloo MR, Effraim PR, Tyagi S, Zhao P, Dib-Hajj SD, Waxman SG. Functionally-selective inhibition of threshold sodium currents and excitability in dorsal root ganglion neurons by cannabinol. Commun Biol. 2024 Jan 23;7(1):120. doi: 10.1038/s42003-024-05781-x. PMID: 38263462; PMCID: PMC10805714.
53B. Lavender I, McCartney D, Marshall N, Suraev A, Irwin C, D'Rozario AL, Gordon CJ, Saini B, Grunstein RR, Yee B, McGregor I, Hoyos CM. Cannabinol (CBN; 30 and 300 mg) effects on sleep and next-day function in insomnia disorder ('CUPID' study): protocol for a randomised, double-blind, placebo-controlled, cross-over, three-arm, proof-of-concept trial. BMJ Open. 2023 Aug 23;13(8):e071148. doi: 10.1136/bmjopen-2022-071148. PMID: 37612115; PMCID: PMC10450062.
54B. Gojani EG, Wang B, Li DP, Kovalchuk O, Kovalchuk I. Anti-Inflammatory Effects of Minor Cannabinoids CBC, THCV, and CBN in Human Macrophages. Molecules. 2023 Sep 7;28(18):6487. doi: 10.3390/molecules28186487. PMID: 37764262; PMCID: PMC10534668.
55B. Kollipara R, Langille E, Tobin C, French CR. Phytocannabinoids Reduce Seizures in Larval Zebrafish and Affect Endocannabinoid Gene Expression. Biomolecules. 2023 Sep 16;13(9):1398. doi: 10.3390/biom13091398. PMID: 37759798; PMCID: PMC10526363.
56B. Marsh DT, Sugiyama A, Imai Y, Kato R, Smid SD. The structurally diverse phytocannabinoids cannabichromene, cannabigerol and cannabinol significantly inhibit amyloid β-evoked neurotoxicity and changes in cell morphology in PC12 cells. Basic Clin Pharmacol Toxicol. 2024 Mar;134(3):293-309. doi: 10.1111/bcpt.13943. Epub 2023 Sep 25. PMID: 37697481.
57B. Abioye, A., Ayodele, O., Marinkovic, A. et al. Δ9-Tetrahydrocannabivarin (THCV): a commentary on potential therapeutic benefit for the management of obesity and diabetes. J Cannabis Res 2, 6 (2020). https://doi.org/10.1186/s42238-020-0016-7
58B. Chaigne S, Barbeau S, Ducret T, Guinamard R, Benoist D. Pathophysiological Roles of the TRPV4 Channel in the Heart. Cells. 2023 Jun 17;12(12):1654. doi: 10.3390/cells12121654. PMID: 37371124; PMCID: PMC10296986.
59B. Baratchi S, Keov P, Darby WG, Lai A, Khoshmanesh K, Thurgood P, Vahidi P, Ejendal K, McIntyre P. The TRPV4 Agonist GSK1016790A Regulates the Membrane Expression of TRPV4 Channels. Front Pharmacol. 2019 Jan 23;10:6. doi: 10.3389/fphar.2019.00006. PMID: 30728775; PMCID: PMC6351496.
60B. Kumar H, Lim CS, Choi H, Joshi HP, Kim KT, Kim YH, Park CK, Kim HM, Han IB. Elevated TRPV4 Levels Contribute to Endothelial Damage and Scarring in Experimental Spinal Cord Injury. J Neurosci. 2020 Feb 26;40(9):1943-1955. doi: 10.1523/JNEUROSCI.2035-19.2020. Epub 2020 Jan 23. PMID: 31974206; PMCID: PMC7046444.
61B. Kumar A, Majhi RK, Swain N, Giri SC, Kar S, Samanta L, Goswami C. TRPV4 is endogenously expressed in vertebrate spermatozoa and regulates intracellular calcium in human sperm. Biochem Biophys Res Commun. 2016 May 13;473(4):781-788. doi: 10.1016/j.bbrc.2016.03.071. Epub 2016 Mar 19. PMID: 27003252.
62B. Dunn KM, Hill-Eubanks DC, Liedtke WB, Nelson MT. TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6157-62. doi: 10.1073/pnas.1216514110. Epub 2013 Mar 25. PMID: 23530219; PMCID: PMC3625327.
63B. Scheraga RG, Southern BD, Grove LM, Olman MA. The Role of TRPV4 in Regulating Innate Immune Cell Function in Lung Inflammation. Front Immunol. 2020 Jun 26;11:1211. doi: 10.3389/fimmu.2020.01211. PMID: 32676078; PMCID: PMC7333351.
64B. Bonvini SJ, Birrell MA, Grace MS, Maher SA, Adcock JJ, Wortley MA, Dubuis E, Ching YM, Ford AP, Shala F, Miralpeix M, Tarrason G, Smith JA, Belvisi MG. Transient receptor potential cation channel, subfamily V, member 4 and airway sensory afferent activation: Role of adenosine triphosphate. J Allergy Clin Immunol. 2016 Jul;138(1):249-261.e12. doi: 10.1016/j.jaci.2015.10.044. Epub 2016 Jan 11. PMID: 26792207; PMCID: PMC4929136.
65B. Hayakawa S, Tanaka T, Ogawa R, Ito S, Ueno S, Koyama H, Tomotaka O, Sagawa H, Tanaka T, Iwakura H, Takahashi H, Matsuo Y, Mitsui A, Kimura M, Takahashi S, Takiguchi S. Potential Role of TRPV4 in Stretch-Induced Ghrelin Secretion and Obesity. Int J Endocrinol. 2022 Nov 8;2022:7241275. doi: 10.1155/2022/7241275. PMID: 36397882; PMCID: PMC9666045.
66B. Koch M. Cannabinoid Receptor Signaling in Central Regulation of Feeding Behavior: A Mini-Review. Front Neurosci. 2017 May 24;11:293. doi: 10.3389/fnins.2017.00293. PMID: 28596721; PMCID: PMC5442223.
67B. Miyoshi T, Nagai T, Inoue K, Ikeda S, Yamaguchi O. Adenosine triphosphate-induced life-threatening arrhythmia. J Cardiol Cases. 2023 Jun 1;28(4):150-152. doi: 10.1016/j.jccase.2023.05.011. PMID: 37818434; PMCID: PMC10562110.
68B. Janssen DA, Hoenderop JG, Heesakkers JP, Schalken JA. TRPV4 mediates afferent pathways in the urinary bladder. A spinal c-fos study showing TRPV1 related adaptations in the TRPV4 knockout mouse. Pflugers Arch. 2016 Oct;468(10):1741-9. doi: 10.1007/s00424-016-1859-9. Epub 2016 Aug 5. PMID: 27491796; PMCID: PMC5026715.
69B. Gojani EG, Wang B, Li DP, Kovalchuk O, Kovalchuk I. Anti-Inflammatory Effects of Minor Cannabinoids CBC, THCV, and CBN in Human Macrophages. Molecules. 2023 Sep 7;28(18):6487. doi: 10.3390/molecules28186487. PMID: 37764262; PMCID: PMC10534668.
70B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5315659, Cannabigerol. Retrieved October 25, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Cannabigerol.
71B. Rob’s Plants. (2017). Helichrysum umbraculigerum. Retrieved October 7, 2024, from http://www.robsplants.com/plantlinks/HelichrysumUmbraculigerum.htm​:contentReference[oaicite:0]{index=0}
72B. SANBI. (n.d.). Helichrysum umbraculigerum - PlantZAfrica.com. Retrieved October 7, 2024, from https://pza.sanbi.org/helichrysum-umbraculigerum​:contentReference[oaicite:1]{index=1}
73B. Cuttler C, Stueber A, Cooper ZD, Russo E. Acute effects of cannabigerol on anxiety, stress, and mood: a double-blind, placebo-controlled, crossover, field trial. Sci Rep. 2024 Jul 13;14(1):16163. doi: 10.1038/s41598-024-66879-0. PMID: 39003387; PMCID: PMC11246434.
74B. Sztolsztener K, Harasim-Symbor E, Chabowski A, Konstantynowicz-Nowicka K. Cannabigerol as an anti-inflammatory agent altering the level of arachidonic acid derivatives in the colon tissue of rats subjected to a high-fat high-sucrose diet. Biomed Pharmacother. 2024 Sep;178:117286. doi: 10.1016/j.biopha.2024.117286. Epub 2024 Aug 11. PMID: 39128189.
75B. Maiocchi A, Fumagalli M, Vismara M, Blanco A, Ciriello U, Paladino G, Piazza S, Martinelli G, Fasano V, Dell'Agli M, Passarella D. Minor Cannabinoids as Inhibitors of Skin Inflammation: Chemical Synthesis and Biological Evaluation. J Nat Prod. 2024 Jul 26;87(7):1725-1734. doi: 10.1021/acs.jnatprod.4c00212. Epub 2024 Jun 18. PMID: 38889235.
76B. Classen N, Pitakbut T, Schöfbänker M, Kühn J, Hrincius ER, Ludwig S, Hensel A, Kayser O. Cannabigerol and Cannabicyclol Block SARS-CoV-2 Cell Fusion. Planta Med. 2024 Aug;90(9):717-725. doi: 10.1055/a-2320-8822. Epub 2024 Jun 17. PMID: 38885660.
77B. GVB Biopharma. ND. What is Cannabicyclol (CBL)? Retrieved 10/25/2024 from https://www.gvbbiopharma.com/what-is-cannabicyclol-cbl/
78B. Zeppa L, Aguzzi C, Morelli MB, Marinelli O, Giangrossi M, Luongo M, Amantini C, Santoni G, Nabissi M. Cannabigerol Induces Autophagic Cell Death by Inhibiting EGFR-RAS Pathways in Human Pancreatic Ductal Adenocarcinoma Cell Lines. Int J Mol Sci. 2024 Feb 7;25(4):2001. doi: 10.3390/ijms25042001. PMID: 38396679; PMCID: PMC10888274.
79B. Alves P, Amaral C, Gonçalves MS, Teixeira N, Correia-da-Silva G. Cannabidivarin and cannabigerol induce unfolded protein response and angiogenesis dysregulation in placental trophoblast HTR-8/SVneo cells. Arch Toxicol. 2024 Sep;98(9):2971-2984. doi: 10.1007/s00204-024-03781-8. Epub 2024 May 15. PMID: 38748041; PMCID: PMC11324689.
80B. Santoni G, Farfariello V, Liberati S, Morelli MB, Nabissi M, Santoni M, Amantini C. The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses. Front Immunol. 2013 Feb 14;4:34. doi: 10.3389/fimmu.2013.00034. PMID: 23420671; PMCID: PMC3572502.
81B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 11601669, Cannabidivarin. Retrieved November 9, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Cannabidivarin.
82B. Voicu V, Brehar FM, Toader C, Covache-Busuioc RA, Corlatescu AD, Bordeianu A, Costin HP, Bratu BG, Glavan LA, Ciurea AV. Cannabinoids in Medicine: A Multifaceted Exploration of Types, Therapeutic Applications, and Emerging Opportunities in Neurodegenerative Diseases and Cancer Therapy. Biomolecules. 2023 Sep 14;13(9):1388. doi: 10.3390/biom13091388. PMID: 37759788; PMCID: PMC10526757.
83B. Zamberletti E, Gabaglio M, Woolley-Roberts M, Bingham S, Rubino T, Parolaro D. Cannabidivarin Treatment Ameliorates Autism-Like Behaviors and Restores Hippocampal Endocannabinoid System and Glia Alterations Induced by Prenatal Valproic Acid Exposure in Rats. Front Cell Neurosci. 2019 Aug 9;13:367. doi: 10.3389/fncel.2019.00367. PMID: 31447649; PMCID: PMC6696797.
84B. Iannotti FA, Pagano E, Moriello AS, Alvino FG, Sorrentino NC, D'Orsi L, Gazzerro E, Capasso R, De Leonibus E, De Petrocellis L, Di Marzo V. Effects of non-euphoric plant cannabinoids on muscle quality and performance of dystrophic mdx mice. Br J Pharmacol. 2019 May;176(10):1568-1584. doi: 10.1111/bph.14460. Epub 2018 Sep 9. PMID: 30074247; PMCID: PMC6487563.
85B. Ashenhurst, James. Stereochemistry and Chirality. Retrieved May 1, 2024 from https://www.masterorganicchemistry.com/2017/01/17/determining-rs-2-the-method-of-dots/
86B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 440917, Limonene, (+)-. Retrieved May 1, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/4R_-1-methyl-4-prop-1-en-2-ylcyclohexene.
87B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 439250, Limonene, (-)-. Retrieved May 1, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/4S_-1-methyl-4-prop-1-en-2-ylcyclohexene.
88B. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 22311, Limonene, (+/-)-. Retrieved May 1, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Limonene.
89B. Park HM, Lee JH, Yaoyao J, Jun HJ, Lee SJ. Limonene, a natural cyclic terpene, is an agonistic ligand for adenosine A(2A) receptors. Biochem Biophys Res Commun. 2011 Jan 7;404(1):345-8. doi: 10.1016/j.bbrc.2010.11.121. Epub 2010 Dec 4. PMID: 21134357.
90B. Song Y, Seo S, Lamichhane S, Seo J, Hong JT, Cha HJ, Yun J. Limonene has anti-anxiety activity via adenosine A2A receptor-mediated regulation of dopaminergic and GABAergic neuronal function in the striatum. Phytomedicine. 2021 Mar;83:153474. doi: 10.1016/j.phymed.2021.153474. Epub 2021 Jan 21. PMID: 33548867.
91B. Mori A, Chen JF, Uchida S, Durlach C, King SM, Jenner P. The Pharmacological Potential of Adenosine A2A Receptor Antagonists for Treating Parkinson's Disease. Molecules. 2022 Apr 6;27(7):2366. doi: 10.3390/molecules27072366. PMID: 35408767; PMCID: PMC9000505.
92B. Raja K, Ramrakhia S, Dev K, Shahid W, Sohail H, Memon MK, Memon S. The Risk Factors for the Wearing-Off Phenomenon in Parkinson's Disease. Cureus. 2020 Sep 30;12(9):e10729. doi: 10.7759/cureus.10729. PMID: 33145134; PMCID: PMC7599057.
93B. Choi J, Horner KA. Dopamine Agonists. [Updated 2023 Jun 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551686/
94B. Rains CP, Bryson HM, Fitton A. Cabergoline. A review of its pharmacological properties and therapeutic potential in the treatment of hyperprolactinaemia and inhibition of lactation. Drugs. 1995 Feb;49(2):255-79. doi: 10.2165/00003495-199549020-00009. PMID: 7729332.
95B. Ozery M, Wadhwa R. Bromocriptine. [Updated 2022 Nov 23]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK555948/
96B. Gandhi KR, Saadabadi A. Levodopa (L-Dopa) [Updated 2023 Apr 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482140/
97B. Jia SS, Xi GP, Zhang M, Chen YB, Lei B, Dong XS, Yang YM. Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncol Rep. 2013 Jan;29(1):349-54. doi: 10.3892/or.2012.2093. Epub 2012 Oct 19. PMID: 23117412.
98B. Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999 Feb;6(2):99-104. doi: 10.1038/sj.cdd.4400476. PMID: 10200555.
99B. Avrutsky MI, Troy CM. Caspase-9: A Multimodal Therapeutic Target With Diverse Cellular Expression in Human Disease. Front Pharmacol. 2021 Jul 9;12:701301. doi: 10.3389/fphar.2021.701301. PMID: 34305609; PMCID: PMC8299054.
1C. Li P, Zhou L, Zhao T, Liu X, Zhang P, Liu Y, Zheng X, Li Q. Caspase-9: structure, mechanisms and clinical application. Oncotarget. 2017 Apr 4;8(14):23996-24008. doi: 10.18632/oncotarget.15098. PMID: 28177918; PMCID: PMC5410359.
2C. He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 2021 Dec 16;6(1):425. doi: 10.1038/s41392-021-00828-5. PMID: 34916492; PMCID: PMC8677728.
3C. Sarker D, Ang JE, Baird R, Kristeleit R, Shah K, Moreno V, Clarke PA, Raynaud FI, Levy G, Ware JA, Mazina K, Lin R, Wu J, Fredrickson J, Spoerke JM, Lackner MR, Yan Y, Friedman LS, Kaye SB, Derynck MK, Workman P, de Bono JS. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2015 Jan 1;21(1):77-86. doi: 10.1158/1078-0432.CCR-14-0947. Epub 2014 Nov 4. PMID: 25370471; PMCID: PMC4287394.
4C. Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D, Demanse D, De Buck SS, Ru QC, Peters M, Goldbrunner M, Baselga J. Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2012 Jan 20;30(3):282-90. doi: 10.1200/JCO.2011.36.1360. Epub 2011 Dec 12. PMID: 22162589.
5C. Miyazawa M, Yamafuji C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J Agric Food Chem. 2005 Mar 9;53(5):1765-8. doi: 10.1021/jf040019b. PMID: 15740071.
6C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 6654, alpha-PINENE. Retrieved November 17, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/alpha-PINENE.
7C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 440968, (-)-alpha-Pinene. Retrieved November 17, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/1S_-_-_-alpha-Pinene.
8C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 82227, (+)-alpha-Pinene. Retrieved November 17, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/1R_-_-alpha-Pinene.
9C. Perry NS, Houghton PJ, Theobald A, Jenner P, Perry EK. In-vitro inhibition of human erythrocyte acetylcholinesterase by salvia lavandulaefolia essential oil and constituent terpenes. J Pharm Pharmacol. 2000 Jul;52(7):895-902. doi: 10.1211/0022357001774598. Erratum in: J Pharm Pharmacol 2000 Dec;52(12):203. PMID: 10933142.
10C. Singh R, Sadiq NM. Cholinesterase Inhibitors. [Updated 2023 Jul 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK544336/
11C. Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013 May;11(3):315-35. doi: 10.2174/1570159X11311030006. PMID: 24179466; PMCID: PMC3648782.
12C. Khan-Mohammadi-Khorrami MK, Asle-Rousta M, Rahnema M, Amini R. Neuroprotective effect of alpha-pinene is mediated by suppression of the TNF-α/NF-κB pathway in Alzheimer's disease rat model. J Biochem Mol Toxicol. 2022 May;36(5):e23006. doi: 10.1002/jbt.23006. Epub 2022 Feb 17. PMID: 35174932.
13C. Gaweł S, Wardas M, Niedworok E, Wardas P. Dialdehyd malonowy (MDA) jako wskaźnik procesów peroksydacji lipidów w organizmie [Malondialdehyde (MDA) as a lipid peroxidation marker]. Wiad Lek. 2004;57(9-10):453-5. Polish. PMID: 15765761.
14C. Picón-Pagès P, Garcia-Buendia J, Muñoz FJ. Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis. 2019 Aug 1;1865(8):1949-1967. doi: 10.1016/j.bbadis.2018.11.007. Epub 2018 Nov 27. PMID: 30500433.
15C. Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem. 2009 Mar;390(3):191-214. doi: 10.1515/BC.2009.033. PMID: 19166318; PMCID: PMC2756154.
16C. Nandi A, Yan LJ, Jana CK, Das N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid Med Cell Longev. 2019 Nov 11;2019:9613090. doi: 10.1155/2019/9613090. PMID: 31827713; PMCID: PMC6885225.
17C. Góth L, Eaton JW. Hereditary catalase deficiencies and increased risk of diabetes. Lancet. 2000 Nov 25;356(9244):1820-1. doi: 10.1016/S0140-6736(00)03238-4. PMID: 11117918.
18C. Habib LK, Lee MT, Yang J. Inhibitors of catalase-amyloid interactions protect cells from beta-amyloid-induced oxidative stress and toxicity. J Biol Chem. 2010 Dec 10;285(50):38933-43. doi: 10.1074/jbc.M110.132860. Epub 2010 Oct 5. PMID: 20923778; PMCID: PMC2998107.
19C. National Library of Medicine. CHRNA7 cholinergic receptor nicotinic alpha 7 subunit [ Homo sapiens (human) ]. Retrieved on May 3, 2024 from https://www.ncbi.nlm.nih.gov/gene/1139
20C. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003 Jan 23;421(6921):384-8. doi: 10.1038/nature01339. Epub 2002 Dec 22. PMID: 12508119.
21C. Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015 Dec 10;11(6):1164-78. doi: 10.5114/aoms.2015.56342. Epub 2015 Dec 11. PMID: 26788077; PMCID: PMC4697050.
22C. Koo JW, Russo SJ, Ferguson D, Nestler EJ, Duman RS. Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2669-74. doi: 10.1073/pnas.0910658107. Epub 2010 Jan 26. PMID: 20133768; PMCID: PMC2823860.
23C. Golan H, Levav T, Mendelsohn A, Huleihel M. Involvement of tumor necrosis factor alpha in hippocampal development and function. Cereb Cortex. 2004 Jan;14(1):97-105. doi: 10.1093/cercor/bhg108. PMID: 14654461.
24C. Aloe L, Rocco ML, Balzamino BO, Micera A. Nerve Growth Factor: A Focus on Neuroscience and Therapy. Curr Neuropharmacol. 2015;13(3):294-303. doi: 10.2174/1570159x13666150403231920. PMID: 26411962; PMCID: PMC4812798.
25C. Ji J, Maren S. Differential roles for hippocampal areas CA1 and CA3 in the contextual encoding and retrieval of extinguished fear. Learn Mem. 2008 Apr 3;15(4):244-51. doi: 10.1101/lm.794808. PMID: 18391185; PMCID: PMC2327266.
26C. Varsity Tutors. (n.d.). Biological and cognitive factors. Varsity Tutors. Retrieved 5/23/2024, from https://www.varsitytutors.com/ap_psychology-help/biological-and-cognitive-factors#:~:text=Context%2Ddependent%20memory%20is%20a,where%20you%20learned%20that%20information!
27C. Veerasammy S, Van Steenwinckel J, Le Charpentier T, Seo JH, Fleiss B, Gressens P, Levison SW. Perinatal IL-1β-induced inflammation suppresses Tbr2+ intermediate progenitor cell proliferation in the developing hippocampus accompanied by long-term behavioral deficits. Brain Behav Immun Health. 2020 Jul 17;7:100106. doi: 10.1016/j.bbih.2020.100106. PMID: 34589867; PMCID: PMC8474668.
28C. Marsland AL, Gianaros PJ, Abramowitch SM, Manuck SB, Hariri AR. Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiatry. 2008 Sep 15;64(6):484-90. doi: 10.1016/j.biopsych.2008.04.016. Epub 2008 Jun 2. PMID: 18514163; PMCID: PMC2562462.
29C. Gruol DL. IL-6 regulation of synaptic function in the CNS. Neuropharmacology. 2015 Sep;96(Pt A):42-54. doi: 10.1016/j.neuropharm.2014.10.023. Epub 2014 Nov 22. PMID: 25445486; PMCID: PMC4446251.
30C. Gao C, Gill MB, Tronson NC, Guedea AL, Guzmán YF, Huh KH, Corcoran KA, Swanson GT, Radulovic J. Hippocampal NMDA receptor subunits differentially regulate fear memory formation and neuronal signal propagation. Hippocampus. 2010 Sep;20(9):1072-82. doi: 10.1002/hipo.20705. PMID: 19806658; PMCID: PMC2891656.
31C. Medina JH, Viola H. ERK1/2: A Key Cellular Component for the Formation, Retrieval, Reconsolidation and Persistence of Memory. Front Mol Neurosci. 2018 Oct 5;11:361. doi: 10.3389/fnmol.2018.00361. PMID: 30344477; PMCID: PMC6182090.
32C. Aida T, Ito Y, Takahashi YK, Tanaka K. Overstimulation of NMDA receptors impairs early brain development in vivo. PLoS One. 2012;7(5):e36853. doi: 10.1371/journal.pone.0036853. Epub 2012 May 11. PMID: 22606296; PMCID: PMC3350466.
33C. Blanke ML, VanDongen AMJ. Activation Mechanisms of the NMDA Receptor. In: Van Dongen AM, editor. Biology of the NMDA Receptor. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 13. Available from: https://www.ncbi.nlm.nih.gov/books/NBK5274/
34C. Moss DE. Is Combining an Anticholinergic with a Cholinesterase Inhibitor a Good Strategy for High-Level CNS Cholinesterase Inhibition? J Alzheimers Dis. 2019;71(4):1099-1103. doi: 10.3233/JAD-190626. PMID: 31476160; PMCID: PMC6839449.
35C. Ghossein N, Kang M, Lakhkar AD. Anticholinergic Medications. [Updated 2023 May 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK555893/
36C. GoodRx. (n.d.). Donepezil interactions. Retrieved 9/17/2024, from https://www.goodrx.com/donepezil/interactions
37C. Gust C, Pugliese N, Stern G. Suspected donepezil toxicity: A case report. Clin Case Rep. 2020 Sep 3;8(12):2818-2823. doi: 10.1002/ccr3.3245. PMID: 33363829; PMCID: PMC7752397.
38C. Adeyinka A, Kondamudi NP. Cholinergic Crisis. 2023 Aug 12. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 29494040.
39C. Vogel SM, Mican LM, Smith TL. Donepezil-induced QTc prolongation: A case report. Ment Health Clin. 2019 May 10;9(3):128-132. doi: 10.9740/mhc.2019.05.128. PMID: 31123660; PMCID: PMC6513057.
40C. Farzam K, Tivakaran VS. QT Prolonging Drugs. [Updated 2023 Jul 2]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534864/
41C. Kumar A, Gupta V, Sharma S. Donepezil. [Updated 2023 Aug 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513257/
42C. Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: Targeting the Cholinergic System. Curr Neuropharmacol. 2016;14(1):101-15. doi:10.2174/1570159x13666150716165726. PMID: 26813123; PMCID: PMC4787279.
43C. Migirov A, Datta AR. Physiology, Anticholinergic Reaction. [Updated 2023 Jul 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK546589/
44C. Sheppard D, Epstein J, Holtzman MJ, Nadel JA, Boushey HA. Dose-dependent inhibition of cold air-induced bronchoconstriction by atropine. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jul;53(1):169-74. doi: 10.1152/jappl.1982.53.1.169. PMID: 6749773.
45C. Masurkar PP, Chatterjee S, Sherer JT, Chen H, Johnson ML, Aparasu RR. Risk of overactive bladder associated with cholinesterase inhibitors in dementia. J Am Geriatr Soc. 2022 Mar;70(3):820-830. doi: 10.1111/jgs.17579. Epub 2021 Dec 2. PMID: 34854475.
46C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 14896, beta-Pinene. Retrieved May 30, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/beta-Pinene.
47C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 10290825, (+)-beta-Pinene. Retrieved May 30, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/10290825.
48C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 440967, (-)-beta-Pinene. Retrieved May 30, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/nopinene.
49C. Salehi B, Upadhyay S, Erdogan Orhan I, Kumar Jugran A, L D Jayaweera S, A Dias D, Sharopov F, Taheri Y, Martins N, Baghalpour N, Cho WC, Sharifi-Rad J. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules. 2019 Nov 14;9(11):738. doi: 10.3390/biom9110738. PMID: 31739596; PMCID: PMC6920849.
50C. Zhou JY, Tang FD, Mao GG, Bian RL. Effect of alpha-pinene on nuclear translocation of NF-kappa B in THP-1 cells. Acta Pharmacol Sin. 2004 Apr;25(4):480-4. PMID: 15066217.
51C. Alma MH, Nitz S, Kollmannsberger H, Digrak M, Efe FT, Yilmaz N. Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish pistachio (Pistacia vera L.). J Agric Food Chem. 2004 Jun 16;52(12):3911-4. doi: 10.1021/jf040014e. PMID: 15186116.
52C. Miyazawa M, Yamafuji C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J Agric Food Chem. 2005 Mar 9;53(5):1765-8. doi: 10.1021/jf040019b. PMID: 15740071.
53C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 26049, 3-Carene. Retrieved November 20, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/3-Carene.
54C. Jeong JG, Kim YS, Min YK, Kim SH. Low concentration of 3-carene stimulates the differentiation of mouse osteoblastic MC3T3-E1 subclone 4 cells. Phytother Res. 2008 Jan;22(1):18-22. doi: 10.1002/ptr.2247. PMID: 17685387.
55C. Re L, Barocci S, Sonnino S, Mencarelli A, Vivani C, Paolucci G, Scarpantonio A, Rinaldi L, Mosca E. Linalool modifies the nicotinic receptor-ion channel kinetics at the mouse neuromuscular junction. Pharmacol Res. 2000 Aug;42(2):177-82. doi: 10.1006/phrs.2000.0671. PMID: 10887049.
56C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 443158, Linalool, (-)-. Retrieved May 30, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/3R_-3_7-dimethylocta-1_6-dien-3-ol
58C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 67179, Linalool, (+)-. Retrieved May 30, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/3S_-3_7-dimethylocta-1_6-dien-3-ol
59C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 6549, Linalool, (+/-)-. Retrieved May 30, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Linalool
60C. Aelenei P, Rimbu CM, Guguianu E, Dimitriu G, Aprotosoaie AC, Brebu M, Horhogea CE, Miron A. Coriander essential oil and linalool - interactions with antibiotics against Gram-positive and Gram-negative bacteria. Lett Appl Microbiol. 2019 Feb;68(2):156-164. doi: 10.1111/lam.13100. Epub 2019 Jan 4. PMID: 30471142.
61C. Al-Khayri JM, Banadka A, Nandhini M, Nagella P, Al-Mssallem MQ, Alessa FM. Essential Oil from Coriandrum sativum: A review on Its Phytochemistry and Biological Activity. Molecules. 2023 Jan 10;28(2):696. doi: 10.3390/molecules28020696. PMID: 36677754; PMCID: PMC9864992.
62C. Li Y, Lv O, Zhou F, Li Q, Wu Z, Zheng Y. Linalool Inhibits LPS-Induced Inflammation in BV2 Microglia Cells by Activating Nrf2. Neurochem Res. 2015 Jul;40(7):1520-5. doi: 10.1007/s11064-015-1629-7. Epub 2015 Jun 4. PMID: 26040565.
63C. Del Prado-Audelo ML, Cortés H, Caballero-Florán IH, González-Torres M, Escutia-Guadarrama L, Bernal-Chávez SA, Giraldo-Gomez DM, Magaña JJ, Leyva-Gómez G. Therapeutic Applications of Terpenes on Inflammatory Diseases. Front Pharmacol. 2021 Aug 13;12:704197. doi: 10.3389/fphar.2021.704197. PMID: 34483907; PMCID: PMC8414653.
64C. Re L, Barocci S, Sonnino S, Mencarelli A, Vivani C, Paolucci G, Scarpantonio A, Rinaldi L, Mosca E. Linalool modifies the nicotinic receptor-ion channel kinetics at the mouse neuromuscular junction. Pharmacol Res. 2000 Aug;42(2):177-82. doi: 10.1006/phrs.2000.0671. PMID: 10887049.
65C. Kumar A, Gupta V, Sharma S. Donepezil. [Updated 2023 Aug 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513257/
66C. National Institute of Neurological Disorders and Stroke. Parkinson's Disease. Retreived 9/24/2024 from https://www.ninds.nih.gov/health-information/disorders/parkinsons-disease
67C. Dutra FL, Oliveira MM, Santos RS, Silva WS, Alviano DS, Vieira DP, Lopes AH. Effects of linalool and eugenol on the survival of Leishmania (L.) infantum chagasi within macrophages. Acta Trop. 2016 Dec;164:69-76. doi: 10.1016/j.actatropica.2016.08.026. Epub 2016 Aug 30. PMID: 27591136.
68C. Jansen C, Shimoda LMN, Kawakami JK, Ang L, Bacani AJ, Baker JD, Badowski C, Speck M, Stokes AJ, Small-Howard AL, Turner H. Myrcene and terpene regulation of TRPV1. Channels (Austin). 2019 Dec;13(1):344-366. doi: 10.1080/19336950.2019.1654347. PMID: 31446830; PMCID: PMC6768052.
69C. Rao VS, Menezes AM, Viana GS. Effect of myrcene on nociception in mice. J Pharm Pharmacol. 1990 Dec;42(12):877-8. doi: 10.1111/j.2042-7158.1990.tb07046.x. PMID: 1983154.
70C. Jordan BA, Gomes I, Rios C, Filipovska J, Devi LA. Functional interactions between mu opioid and alpha 2A-adrenergic receptors. Mol Pharmacol. 2003 Dec;64(6):1317-24. doi: 10.1124/mol.64.6.1317. PMID: 14645661.
71C. Eason MG, Jacinto MT, Liggett SB. Contribution of ligand structure to activation of alpha 2-adrenergic receptor subtype coupling to Gs. Mol Pharmacol. 1994 Apr;45(4):696-702. PMID: 7910371.
72C. Niemi G, Breivik H. Adrenaline markedly improves thoracic epidural analgesia produced by a low-dose infusion of bupivacaine, fentanyl and adrenaline after major surgery. A randomised, double-blind, cross-over study with and without adrenaline. Acta Anaesthesiol Scand. 1998 Sep;42(8):897-909. doi: 10.1111/j.1399-6576.1998.tb05348.x. PMID: 9773133.
73C. De-Oliveira AC, Ribeiro-Pinto LF, Paumgartten JR. In vitro inhibition of CYP2B1 monooxygenase by beta-myrcene and other monoterpenoid compounds. Toxicol Lett. 1997 Jun 16;92(1):39-46. doi: 10.1016/s0378-4274(97)00034-9. PMID: 9242356.
74C. Lorenzetti BB, Souza GE, Sarti SJ, Santos Filho D, Ferreira SH. Myrcene mimics the peripheral analgesic activity of lemongrass tea. J Ethnopharmacol. 1991 Aug;34(1):43-8. doi: 10.1016/0378-8741(91)90187-i. PMID: 1753786.
75C. Samuelsson B, Morgenstern R, Jakobsson PJ. Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev. 2007 Sep;59(3):207-24. doi: 10.1124/pr.59.3.1. PMID: 17878511.
76C. National Toxicology Program. NTP technical report on the toxicology and carcinogenesis studies of beta-myrcene (CAS No. 123-35-3) in F344/N rats and B6C3F1 mice (Gavage studies). Natl Toxicol Program Tech Rep Ser. 2010 Dec;(557):1-163. PMID: 21415873.
77C. do Vale TG, Furtado EC, Santos JG Jr, Viana GS. Central effects of citral, myrcene and limonene, constituents of essential oil chemotypes from Lippia alba (Mill.) n.e. Brown. Phytomedicine. 2002 Dec;9(8):709-14. doi: 10.1078/094471102321621304. PMID: 12587690.
78C. da-Silva VA, de-Freitas JC, Mattos AP, Paiva-Gouvea W, Presgrave OA, Fingola FF, Menezes MA, Paumgartten FJ. Neurobehavioral study of the effect of beta-myrcene on rodents. Braz J Med Biol Res. 1991;24(8):827-31. PMID: 1797273.
79C. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016 Mar;7(2):27-31. doi: 10.4103/0976-0105.177703. PMID: 27057123; PMCID: PMC4804402.
80C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5281515, Caryophyllene. Retrieved June 12, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Caryophyllene.
81C. Gertsch, J., Leonti, M., Raduner, S., Racz, I., Chen, J. Z., Xie, X. Q., Altmann, K. H., Karsak, M., & Zimmer, A. (2008). Beta-caryophyllene is a dietary cannabinoid. Proceedings of the National Academy of Sciences, 105(26), 9099–9104. https://doi.org/10.1073/pnas.0803601105
82C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 20831623, (+)-beta-Caryophyllene. Retrieved June 12, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/be ta-Caryophyllene.
83C. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5281522, Isocaryophyllene. Retrieved June 12, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Isocaryophyllene.
84C. Russo, Ethan. “Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects”. British Journal of Pharmacology. 29 December 2010
85C. Basile AC, Sertié JA, Freitas PC, Zanini AC. Anti-inflammatory activity of oleoresin from Brazilian Copaifera. J Ethnopharmacol. 1988 Jan;22(1):101-9. doi: 10.1016/0378-8741(88)90235-8. PMID: 3352280.
86C. Herrero-Jáuregui C, Casado MA, das Graças Bichara Zoghbi M, Célia Martins-da-Silva R. Chemical variability of Copaifera reticulata Ducke oleoresin. Chem Biodivers. 2011 Apr;8(4):674-85. doi: 10.1002/cbdv.201000258. PMID: 21480513.
87C. Legault J, Pichette A. Potentiating effect of beta-caryophyllene on anticancer activity of alpha-humulene, isocaryophyllene and paclitaxel.
88C. National Cancer institute. (n.d.) Paclitaxel. Retrieved 6/11/2024 from https://www.cancer.gov/about-cancer/treatment/drugs/paclitaxel
89C. Xi ZX, Peng XQ, Li X, Song R, Zhang HY, Liu QR, Yang HJ, Bi GH, Li J, Gardner EL. Brain cannabinoid CB₂ receptors modulate cocaine's actions in mice. Nat Neurosci. 2011 Jul 24;14(9):1160-6. doi: 10.1038/nn.2874. PMID: 21785434; PMCID: PMC3164946.
90C. Karsak M, Gaffal E, Date R, Wang-Eckhardt L, Rehnelt J, Petrosino S, Starowicz K, Steuder R, Schlicker E, Cravatt B, Mechoulam R, Buettner R, Werner S, Di Marzo V, Tüting T, Zimmer A. Attenuation of allergic contact dermatitis through the endocannabinoid system. Science. 2007 Jun 8;316(5830):1494-7. doi: 10.1126/science.1142265. PMID: 17556587.
91C. Li, L., Liu, X., Ge, W., Chen, C., Huang, Y., Jin, Z., Zhan, M., Duan, X., Liu, X., Kong, Y., Jiang, J., Li, X., Zeng, X., Li, F., Xu, S., Li, M., & Chen, H. (2022). CB2R deficiency exacerbates imiquimod-induced psoriasiform dermatitis and itch through the neuro-immune pathway. Pain Research Forum. Retrieved from https://www.iasp-pain.org/publications/pain-research-forum/papers-of-the-week/paper/190456-cb2r-deficiency-exacerbates-imiquimod-induced-psoriasiform-dermatitis-and-itch-through/
92C. Schlosburg JE, O'Neal ST, Conrad DH, Lichtman AH. CB1 receptors mediate rimonabant-induced pruritic responses in mice: investigation of locus of action. Psychopharmacology (Berl). 2011 Aug;216(3):323-31. doi: 10.1007/s00213-011-2224-5. Epub 2011 Feb 22. PMID: 21340468; PMCID: PMC3606913.
93C. Avila C, Massick S, Kaffenberger BH, Kwatra SG, Bechtel M. Cannabinoids for the treatment of chronic pruritus: A review. J Am Acad Dermatol. 2020 May;82(5):1205-1212. doi: 10.1016/j.jaad.2020.01.036. Epub 2020 Jan 25. PMID: 31987788.
94C. Campbell WE, Gammon DW, Smith P, Abrahams M, Purves TD. Composition and antimalarial activity in vitro of the essential oil of Tetradenia riparia. Planta Med. 1997 Jun;63(3):270-2. doi: 10.1055/s-2006-957672. PMID: 9225614.
95C. Rong Y, Liu F, Zhou H, Yu T, Qin Z, Cao Q, Liu L, Ma X, Qu L, Xu P, Liao X, Jiang Q, Zhang N, Xu X. Reprogramming of arachidonic acid metabolism using α-terpineol to alleviate asthma: insights from metabolomics. Food Funct. 2024 Apr 22;15(8):4292-4309. doi: 10.1039/d3fo04078j. PMID: 38526853.
96C. Jin JS, Chou JM, Tsai WC, Chen YC, Chen Y, Ong JR, Tsai YL. Effectively α-Terpineol Suppresses Glioblastoma Aggressive Behavior and Downregulates KDELC2 Expression. Phytomedicine. 2024 May;127:155471. doi: 10.1016/j.phymed.2024.155471. Epub 2024 Feb 23. PMID: 38452695.
97C. Bashir A, Mushtaq MN, Younis W, Anjum I. Fenchone, a monoterpene: Toxicity and diuretic profiling in rats. Front Pharmacol. 2023 Jan 26;14:1119360. doi: 10.3389/fphar.2023.1119360. PMID: 36778012; PMCID: PMC9909529.
98C. Belanger JT. Perillyl alcohol: applications in oncology. Altern Med Rev. 1998 Dec;3(6):448-57. PMID: 9855569.
99C. Tambe Y, Tsujiuchi H, Honda G, Ikeshiro Y, Tanaka S. Gastric cytoprotection of the non-steroidal anti-inflammatory sesquiterpene, beta-caryophyllene. Planta Med. 1996 Oct;62(5):469-70. doi: 10.1055/s-2006-957942. PMID: 9005452.
1D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 1742210, beta-CARYOPHYLLENE OXIDE. Retrieved June 20, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/ beta-CARYOPHYLLENE-OXIDE.
2D. Chavan MJ, Wakte PS, Shinde DB. Analgesic and anti-inflammatory activity of Caryophyllene oxide from Annona squamosa L. bark. Phytomedicine. 2010 Feb;17(2):149-51. doi: 10.1016/j.phymed.2009.05.016. Epub 2009 Jul 2. PMID: 19576741.
3D. Jun, N. J. , Mosaddik A., Moon J. Y., Jang K.‐C., Lee D.‐S., Ahn K. S., et al. 2011. Cytotoxic activity of β-caryophyllene oxide isolated from Jeju Guava (Psidium cattleianum Sabine) leaf. Rec. Nat. Prod. 5:242–246.
4D. Shahwar D, Ullah S, Khan MA, Ahmad N, Saeed A, Ullah S. Anticancer activity of Cinnamon tamala leaf constituents towards human ovarian cancer cells. Pak J Pharm Sci. 2015 May;28(3):969-72. PMID: 26004731.
5D. Yang D, Michel L, Chaumont JP, Millet-Clerc J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia. 1999 Nov;148(2):79-82. doi: 10.1023/a:1007178924408. PMID: 11189747.
6D. Dalavaye N, Nicholas M, Pillai M, Erridge S, Sodergren MH. The Clinical Translation of α-humulene - A Scoping Review. Planta Med. 2024 Aug;90(9):664-674. doi: 10.1055/a-2307-8183. Epub 2024 Apr 16. PMID: 38626911; PMCID: PMC11254484.
7D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5281520, Humulene. Retrieved November 22, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Humulene.
8D. Chen H, Yuan J, Hao J, Wen Y, Lv Y, Chen L, Yang X. α-Humulene inhibits hepatocellular carcinoma cell proliferation and induces apoptosis through the inhibition of Akt signaling. Food Chem Toxicol. 2019 Dec;134:110830. doi: 10.1016/j.fct.2019.110830. Epub 2019 Sep 25. PMID: 31562948.
9D. Bungau SG, Vesa CM, Bustea C, Purza AL, Tit DM, Brisc MC, Radu AF. Antioxidant and Hypoglycemic Potential of Essential Oils in Diabetes Mellitus and Its Complications. Int J Mol Sci. 2023 Nov 19;24(22):16501. doi: 10.3390/ijms242216501. PMID: 38003691; PMCID: PMC10671358.
10D. Rogerio AP, Andrade EL, Leite DF, Figueiredo CP, Calixto JB. Preventive and therapeutic anti-inflammatory properties of the sesquiterpene alpha-humulene in experimental airways allergic inflammation. Br J Pharmacol. 2009 Oct;158(4):1074-87. doi: 10.1111/j.1476-5381.2009.00177.x. Epub 2009 May 8. PMID: 19438512; PMCID: PMC2785529.
11D. Dos Santos Negreiros P, da Costa DS, da Silva VG, de Carvalho Lima IB, Nunes DB, de Melo Sousa FB, de Souza Lopes Araújo T, Medeiros JVR, Dos Santos RF, de Cássia Meneses Oliveira R. Antidiarrheal activity of α-terpineol in mice. Biomed Pharmacother. 2019 Feb;110:631-640. doi: 10.1016/j.biopha.2018.11.131. Epub 2018 Dec 9. PMID: 30540974.
12D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 17100, Alpha-Terpineol. Retrieved June 12, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Alpha-Terpineol.
13D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 443162, (-)-alpha-Terpineol. Retrieved June 13, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/2-_1S_-4-methylcyclohex-3-en-1-yl_propan-2-ol.
14D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 11230, 4-Terpineol, (+/-)-. Retrieved June 12, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/4-Terpineol.
15D. Cao W, Li Y, Zeng Z, Lei S. Terpinen-4-ol Induces Ferroptosis of Glioma Cells via Downregulating JUN Proto-Oncogene. Molecules. 2023 Jun 8;28(12):4643. doi: 10.3390/molecules28124643. PMID: 37375197; PMCID: PMC10301057.
16D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 11467, gamma-Terpineol. Retrieved June 12, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/gamma-Terpineol.
17D. Wu ZL, Yin ZQ, Du YH, Feng RZ, Ye KC, Wei Q, Hu Y, He L, Liao L, Wang Y. γ-terpineol inhibits cell growth and induces apoptosis in human liver cancer BEL-7402 cells in vitro. Int J Clin Exp Pathol. 2014 Sep 15;7(10):6524-33. PMID: 25400730; PMCID: PMC4230123.
18D. Jin JS, Chou JM, Tsai WC, Chen YC, Chen Y, Ong JR, Tsai YL. Effectively α-Terpineol Suppresses Glioblastoma Aggressive Behavior and Downregulates KDELC2 Expression. Phytomedicine. 2024 May;127:155471. doi: 10.1016/j.phymed.2024.155471. Epub 2024 Feb 23. PMID: 38452695.
19D. Rong Y, Liu F, Zhou H, Yu T, Qin Z, Cao Q, Liu L, Ma X, Qu L, Xu P, Liao X, Jiang Q, Zhang N, Xu X. Reprogramming of arachidonic acid metabolism using α-terpineol to alleviate asthma: insights from metabolomics. Food Funct. 2024 Apr 22;15(8):4292-4309. doi: 10.1039/d3fo04078j. PMID: 38526853.
20D. Bicas JL, Neri-Numa IA, Ruiz AL, De Carvalho JE, Pastore GM. Evaluation of the antioxidant and antiproliferative potential of bioflavors. Food Chem Toxicol. 2011 Jul;49(7):1610-5. doi: 10.1016/j.fct.2011.04.012. Epub 2011 Apr 19. PMID: 21540069.
21D. Choi YJ, Sim WC, Choi HK, Lee SH, Lee BH. α-Terpineol induces fatty liver in mice mediated by the AMP-activated kinase and sterol response element binding protein pathway. Food Chem Toxicol. 2013 May;55:129-36. doi: 10.1016/j.fct.2012.12.025. Epub 2012 Dec 28. PMID: 23274539.
22D. Kamiya H, Haraguchi A, Mitarai H, Yuda A, Wada H, Shuxin W, Ziqing R, Weihao S, Wada N. In vitro evaluation of the antimicrobial properties of terpinen-4-ol on apical periodontitis-associated bacteria. J Infect Chemother. 2024 Apr;30(4):306-314. doi: 10.1016/j.jiac.2023.10.021. Epub 2023 Nov 3. PMID: 37922985.
23D. Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med. 2017 Apr;21(4):648-657. doi: 10.1111/jcmm.13008. Epub 2016 Nov 10. PMID: 27860262; PMCID: PMC5345622.
24D. Arafat K, Al-Azawi AM, Sulaiman S, Attoub S. Exploring the Anticancer Potential of Origanum majorana Essential Oil Monoterpenes Alone and in Combination against Non-Small Cell Lung Cancer. Nutrients. 2023 Dec 4;15(23):5010. doi: 10.3390/nu15235010. PMID: 38068868; PMCID: PMC10708317.
25D. Shapira S, Pleban S, Kazanov D, Tirosh P, Arber N. Terpinen-4-ol: A Novel and Promising Therapeutic Agent for Human Gastrointestinal Cancers. PLoS One. 2016 Jun 8;11(6):e0156540. doi: 10.1371/journal.pone.0156540. PMID: 27275783; PMCID: PMC4898785.
26D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5281553, beta-OCIMENE, (3E)-. Retrieved June 13, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/beta-OCIMENE_-_3E.
27D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5320250, beta-Ocimene, (3Z)-. Retrieved June 13, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/beta-Ocimene_-_3Z.
28D. National Center for Advancing Translational Sciences. (n.d.). Pilocarpus microphyllus leaf. Global Substance Registration System. Retrieved June 16, 2024, from https://gsrs.ncats.nih.gov/ginas/app/beta/substances/TY68V0X4KL
29D. Kim MJ, Yang KW, Kim SS, Park SM, Park KJ, Kim KS, Choi YH, Cho KK, Hyun CG. Chemical composition and anti-inflammation activity of essential oils from Citrus unshiu flower. Nat Prod Commun. 2014 May;9(5):727-30. PMID: 25026734.
30D. Oboh G, Ademosun AO, Odubanjo OV, Akinbola IA. Antioxidative properties and inhibition of key enzymes relevant to type-2 diabetes and hypertension by essential oils from black pepper. Adv Pharmacol Sci. 2013;2013:926047. doi: 10.1155/2013/926047. Epub 2013 Nov 21. PMID: 24348547; PMCID: PMC3856121.
31D. Mahdavifard S, Nakhjavani M. 1,8 cineole protects type 2 diabetic rats against diabetic nephropathy via inducing the activity of glyoxalase-I and lowering the level of transforming growth factor-1β. J Diabetes Metab Disord. 2022 Mar 9;21(1):567-572. doi: 10.1007/s40200-022-01014-2. PMID: 35673442; PMCID: PMC9167362.
32D. Cascone P, Iodice L, Maffei ME, Bossi S, Arimura G, Guerrieri E. Tobacco overexpressing β-ocimene induces direct and indirect responses against aphids in receiver tomato plants. J Plant Physiol. 2015 Jan 15;173:28-32. doi: 10.1016/j.jplph.2014.08.011. Epub 2014 Sep 2. PMID: 25462075.
33D. Takaishi M, Fujita F, Uchida K, Yamamoto S, Sawada Shimizu M, Hatai Uotsu C, Shimizu M, Tominaga M. 1,8-cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1. Mol Pain. 2012 Nov 29;8:86. doi: 10.1186/1744-8069-8-86. PMID: 23192000; PMCID: PMC3567430.
34D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 2758, Eucalyptol. Retrieved June 14, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Eucalyptol.
35D. Mahdavifard S, Nakhjavani M. 1,8 cineole protects type 2 diabetic rats against diabetic nephropathy via inducing the activity of glyoxalase-I and lowering the level of transforming growth factor-1β. J Diabetes Metab Disord. 2022 Mar 9;21(1):567-572. doi: 10.1007/s40200-022-01014-2. PMID: 35673442; PMCID: PMC9167362.
36D. Bellumori M, Innocenti M, Congiu F, Cencetti G, Raio A, Menicucci F, Mulinacci N, Michelozzi M. Within-Plant Variation in Rosmarinus officinalis L. Terpenes and Phenols and Their Antimicrobial Activity against the Rosemary Phytopathogens Alternaria alternata and Pseudomonas viridiflava. Molecules. 2021 Jun 5;26(11):3425. doi: 10.3390/molecules26113425. PMID: 34198771; PMCID: PMC8201224.
37D. Juergens UR. Anti-inflammatory properties of the monoterpene 1.8-cineole: current evidence for co-medication in inflammatory airway diseases. Drug Res (Stuttg). 2014 Dec;64(12):638-46. doi: 10.1055/s-0034-1372609. Epub 2014 May 15. PMID: 24831245.
38D. Seol GH, Kim KY. Eucalyptol and Its Role in Chronic Diseases. Adv Exp Med Biol. 2016;929:389-398. doi: 10.1007/978-3-319-41342-6_18. PMID: 27771935.
39D. National Institute of Diabetes and Digestive and Kidney Diseases. (n.d.). Low Blood Glucose (Hypoglycemia). National Institutes of Health. Retrieved June 14, 2024, from https://www.niddk.nih.gov/health-information/diabetes/overview/preventing-problems/low-blood-glucose-hypoglycemia
40D. Riyazi A, Hensel A, Bauer K, Geissler N, Schaaf S, Verspohl EJ. The effect of the volatile oil from ginger rhizomes (Zingiber officinale), its fractions and isolated compounds on the 5-HT3 receptor complex and the serotoninergic system of the rat ileum. Planta Med. 2007 Apr;73(4):355-62. doi: 10.1055/s-2007-967171. PMID: 17511060.
41D. National Cancer Institute. 5-HT3 receptor antagonist. Retrieved 11/24/2024 from https://www.cancer.gov/publications/dictionaries/cancer-terms/def/5-ht3-receptor-antagonist
42D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 442482, alpha-PHELLANDRENE, (-)-. Retrieved June 16, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/5R_-2-methyl-5-propan-2-ylcyclohexa-1_3-diene.
43D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 443160, (+)-alpha-Phellandrene. Retrieved June 16, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/5S_-2-methyl-5-propan-2-ylcyclohexa-1_3-diene.
44D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 7460, alpha-PHELLANDRENE. Retrieved June 16, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/alpha-PHELLANDRENE.
45D. Benjumea D, Abdala S, Hernandez-Luis F, Pérez-Paz P, Martin-Herrera D. Diuretic activity of Artemisia thuscula, an endemic Canary species. J Ethnopharmacol. 2005 Aug 22;100(1-2):205-9. doi: 10.1016/j.jep.2005.03.005. PMID: 16054534.
46D. Lin JJ, Hsu SC, Lu KW, Ma YS, Wu CC, Lu HF, Chen JC, Lin JG, Wu PP, Chung JG. Alpha-phellandrene-induced apoptosis in mice leukemia WEHI-3 cells in vitro. Environ Toxicol. 2016 Nov;31(11):1640-1651. doi: 10.1002/tox.22168. Epub 2015 Jul 15. PMID: 26174008.
47D. Bhattacharya, R., Sharma, P., Bose, D. et al. Synergistic potential of α-Phellandrene combined with conventional antifungal agents and its mechanism against antibiotic resistant Candida albicans. CABI Agric Biosci 5, 17 (2024). https://doi.org/10.1186/s43170-024-00218-1
48D. Hsieh SL, Li YC, Chang WC, Chung JG, Hsieh LC, Wu CC. Induction of necrosis in human liver tumor cells by α-phellandrene. Nutr Cancer. 2014;66(6):970-9. doi: 10.1080/01635581.2014.936946. Epub 2014 Jul 31. PMID: 25077527.
49D. Hsieh LC, Hsieh SL, Chen CT, Chung JG, Wang JJ, Wu CC. Induction of α-phellandrene on autophagy in human liver tumor cells. Am J Chin Med. 2015;43(1):121-36. doi: 10.1142/S0192415X15500081. Epub 2015 Feb 4. PMID: 25649747.
50D. Siqueira HDS, Neto BS, Sousa DP, Gomes BS, da Silva FV, Cunha FVM, Wanderley CWS, Pinheiro G, Cândido AGF, Wong DVT, Ribeiro RA, Lima-Júnior RCP, Oliveira FA. α-Phellandrene, a cyclic monoterpene, attenuates inflammatory response through neutrophil migration inhibition and mast cell degranulation. Life Sci. 2016 Sep 1;160:27-33. doi: 10.1016/j.lfs.2016.07.008. Epub 2016 Jul 20. PMID: 27449945.
51D. Susanto AC, Hartajanie L, Wu CC. α‑Phellandrene enhances the apoptosis of HT‑29 cells induced by 5‑fluorouracil by modulating the mitochondria‑dependent pathway. Oncol Rep. 2024 Apr;51(4):61. doi: 10.3892/or.2024.8720. Epub 2024 Mar 8. PMID: 38456489; PMCID: PMC10940876.
52D. Andrei C, Zanfirescu A, Nițulescu GM, Olaru OT, Negreș S. Natural Active Ingredients and TRPV1 Modulation: Focus on Key Chemical Moieties Involved in Ligand-Target Interaction. Plants (Basel). 2023 Jan 11;12(2):339. doi: 10.3390/plants12020339. PMID: 36679051; PMCID: PMC9860573.
53D. Melo LT, Duailibe MA, Pessoa LM, da Costa FN, Vieira-Neto AE, de Vasconcellos Abdon AP, Campos AR. (-)-α-Bisabolol reduces orofacial nociceptive behavior in rodents. Naunyn Schmiedebergs Arch Pharmacol. 2017 Feb;390(2):187-195. doi: 10.1007/s00210-016-1319-2. Epub 2016 Nov 29. PMID: 27900410.
54D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 442343, Levomenol. Retrieved June 17, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Levomenol.
55D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 1549992, Bisabolol. Retrieved June 17, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Bisabolol.
56D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 10586, alpha-Bisabolol. Retrieved June 17, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/alpha-Bisabolol.
57D. Eddin LB, Jha NK, Goyal SN, Agrawal YO, Subramanya SB, Bastaki SMA, Ojha S. Health Benefits, Pharmacological Effects, Molecular Mechanisms, and Therapeutic Potential of α-Bisabolol. Nutrients. 2022 Mar 25;14(7):1370. doi: 10.3390/nu14071370. PMID: 35405982; PMCID: PMC9002489.
58D. Solovăstru LG, Stîncanu A, De Ascentii A, Capparé G, Mattana P, Vâţă D. Randomized, controlled study of innovative spray formulation containing ozonated oil and α-bisabolol in the topical treatment of chronic venous leg ulcers. Adv Skin Wound Care. 2015 Sep;28(9):406-9. doi: 10.1097/01.ASW.0000470155.29821.ed. PMID: 26280699.
59D. Licari A, Ruffinazzi G, DE Filippo M, Castagnoli R, Marseglia A, Agostinis F, Puviani M, Milani M, Marseglia GL. A starch, glycyrretinic, zinc oxide and bisabolol based cream in the treatment of chronic mild-to-moderate atopic dermatitis in children: a three-center, assessor blinded trial. Minerva Pediatr. 2017 Dec;69(6):470-475. doi: 10.23736/S0026-4946.17.05015-0. PMID: 29181960.
60D. Arenberger P, Arenbergerová M, Drozenová H, Hladíková M, Holcová S. Effect of topical heparin and levomenol on atopic dermatitis: a randomized four-arm, placebo-controlled, double-blind clinical study. J Eur Acad Dermatol Venereol. 2011 Jun;25(6):688-94. doi: 10.1111/j.1468-3083.2010.03950.x. Epub 2011 Jan 9. PMID: 21214633.
61D. Crocco EI, Veasey JV, Boin MF, Lellis RF, Alves RO. A novel cream formulation containing nicotinamide 4%, arbutin 3%, bisabolol 1%, and retinaldehyde 0.05% for treatment of epidermal melasma. Cutis. 2015 Nov;96(5):337-42. PMID: 26682557.
62D. Javed H, Meeran MFN, Azimullah S, Bader Eddin L, Dwivedi VD, Jha NK, Ojha S. α-Bisabolol, a Dietary Bioactive Phytochemical Attenuates Dopaminergic Neurodegeneration through Modulation of Oxidative Stress, Neuroinflammation and Apoptosis in Rotenone-Induced Rat Model of Parkinson's disease. Biomolecules. 2020 Oct 8;10(10):1421. doi: 10.3390/biom10101421. PMID: 33049992; PMCID: PMC7599960.
63D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5356544, (+)-Nerolidol. Retrieved November 25, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/d-Nerolidol.
64D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5320128, cis-Nerolidol. Retrieved November 25, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/cis-Nerolidol.
65D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 5284507, trans-Nerolidol. Retrieved November 25, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/trans-Nerolidol.
66D. Cazella LN, Glamoclija J, Soković M, Gonçalves JE, Linde GA, Colauto NB, Gazim ZC. Antimicrobial Activity of Essential Oil of Baccharis dracunculifolia DC (Asteraceae) Aerial Parts at Flowering Period. Front Plant Sci. 2019 Jan 29;10:27. doi: 10.3389/fpls.2019.00027. PMID: 30761171; PMCID: PMC6361755.
67D. Glumac M, Čikeš Čulić V, Marinović-Terzić I, Radan M. Mechanism of cis-Nerolidol-Induced Bladder Carcinoma Cell Death. Cancers (Basel). 2023 Feb 3;15(3):981. doi: 10.3390/cancers15030981. PMID: 36765938; PMCID: PMC9913136.
68D. Inoue Y, Shiraishi A, Hada T, Hirose K, Hamashima H, Shimada J. The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. FEMS Microbiol Lett. 2004 Aug 15;237(2):325-31. doi: 10.1016/j.femsle.2004.06.049. PMID: 15321680.
69D. Curvelo JAR, Marques AM, Barreto ALS, Romanos MTV, Portela MB, Kaplan MAC, Soares RMA. A novel nerolidol-rich essential oil from Piper claussenianum modulates Candida albicans biofilm. J Med Microbiol. 2014 May;63(Pt 5):697-702. doi: 10.1099/jmm.0.063834-0. Epub 2014 Feb 12. PMID: 24523158.
70D. Chan WK, Tan LT, Chan KG, Lee LH, Goh BH. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules. 2016 Apr 28;21(5):529. doi: 10.3390/molecules21050529. PMID: 27136520; PMCID: PMC6272852.
71D. Chow EWL, Pang LM, Wang Y. From Jekyll to Hyde: The Yeast-Hyphal Transition of Candida albicans. Pathogens. 2021 Jul 7;10(7):859. doi: 10.3390/pathogens10070859. PMID: 34358008; PMCID: PMC8308684.
72D. Klopell FC, Lemos M, Sousa JP, Comunello E, Maistro EL, Bastos JK, de Andrade SF. Nerolidol, an antiulcer constituent from the essential oil of Baccharis dracunculifolia DC (Asteraceae). Z Naturforsch C J Biosci. 2007 Jul-Aug;62(7-8):537-42. doi: 10.1515/znc-2007-7-812. PMID: 17913068.
73D. Vinholes J, Gonçalves P, Martel F, Coimbra MA, Rocha SM. Assessment of the antioxidant and antiproliferative effects of sesquiterpenic compounds in in vitro Caco-2 cell models. Food Chem. 2014 Aug 1;156:204-11. doi: 10.1016/j.foodchem.2014.01.106. Epub 2014 Feb 7. PMID: 24629959.
74D. Lipinski B. Hydroxyl radical and its scavengers in health and disease. Oxid Med Cell Longev. 2011;2011:809696. doi: 10.1155/2011/809696. Epub 2011 Jul 17. PMID: 21904647; PMCID: PMC3166784.
75D. Iqbal D, Khan MS, Waiz M, Rehman MT, Alaidarous M, Jamal A, Alothaim AS, AlAjmi MF, Alshehri BM, Banawas S, Alsaweed M, Madkhali Y, Algarni A, Alsagaby SA, Alturaiki W. Exploring the Binding Pattern of Geraniol with Acetylcholinesterase through In Silico Docking, Molecular Dynamics Simulation, and In Vitro Enzyme Inhibition Kinetics Studies. Cells. 2021 Dec 14;10(12):3533. doi: 10.3390/cells10123533. PMID: 34944045; PMCID: PMC8700130.
76D. Liu Y, Zhou S, Huang X, Rehman HM. Mechanistic insight of the potential of geraniol against Alzheimer's disease. Eur J Med Res. 2022 Jun 14;27(1):93. doi: 10.1186/s40001-022-00699-8. PMID: 35701806; PMCID: PMC9199166.
77D. Katsukawa M, Nakata R, Koeji S, Hori K, Takahashi S, Inoue H. Citronellol and geraniol, components of rose oil, activate peroxisome proliferator-activated receptor α and γ and suppress cyclooxygenase-2 expression. Biosci Biotechnol Biochem. 2011;75(5):1010-2. doi: 10.1271/bbb.110039. Epub 2011 May 20. PMID: 21597168.
78D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 643820, Nerol. Retrieved June 19, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Nerol.
79D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 637566, Geraniol. Retrieved November 26, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Geraniol.
80D. Crespo R, Rodenak-Kladniew BE, Castro MA, Soberón MV, Lavarías SML. Induction of oxidative stress as a possible mechanism by which geraniol affects the proliferation of human A549 and HepG2 tumor cells. Chem Biol Interact. 2020 Apr 1;320:109029. doi: 10.1016/j.cbi.2020.109029. Epub 2020 Feb 28. PMID: 32119866.
81D. Zhang YF, Huang Y, Ni YH, Xu ZM. Systematic elucidation of the mechanism of geraniol via network pharmacology. Drug Des Devel Ther. 2019 Apr 4;13:1069-1075. doi: 10.2147/DDDT.S189088. PMID: 31040644; PMCID: PMC6455000.
82D. Carnesecchi S, Schneider Y, Ceraline J, Duranton B, Gosse F, Seiler N, Raul F. Geraniol, a component of plant essential oils, inhibits growth and polyamine biosynthesis in human colon cancer cells. J Pharmacol Exp Ther. 2001 Jul;298(1):197-200. PMID: 11408542.
83D. Liu Y, Zhou S, Huang X, Rehman HM. Mechanistic insight of the potential of geraniol against Alzheimer's disease. Eur J Med Res. 2022 Jun 14;27(1):93. doi: 10.1186/s40001-022-00699-8. PMID: 35701806; PMCID: PMC9199166.
84D. Deng XY, Xue JS, Li HY, Ma ZQ, Fu Q, Qu R, Ma SP. Geraniol produces antidepressant-like effects in a chronic unpredictable mild stress mice model. Physiol Behav. 2015 Dec 1;152(Pt A):264-71. doi: 10.1016/j.physbeh.2015.10.008. Epub 2015 Oct 8. PMID: 26454213.
85D. Islam MT, Quispe C, Islam MA, Ali ES, Saha S, Asha UH, Mondal M, Razis AFA, Sunusi U, Kamal RM, Kumar M, Sharifi-Rad J. Effects of nerol on paracetamol-induced liver damage in Wistar albino rats. Biomed Pharmacother. 2021 Aug;140:111732. doi: 10.1016/j.biopha.2021.111732. Epub 2021 Jun 12. PMID: 34130201.
86D. Kim CM, Ko YJ, Lee SB, Jang SJ. Adjuvant antimicrobial activity and resensitization efficacy of geraniol in combination with antibiotics on Acinetobacter baumannii clinical isolates. PLoS One. 2022 Jul 21;17(7):e0271516. doi: 10.1371/journal.pone.0271516. PMID: 35862390; PMCID: PMC9302793.
87D. Friedman M, Henika PR, Mandrell RE. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot. 2002 Oct;65(10):1545-60. doi: 10.4315/0362-028x-65.10.1545. PMID: 12380738.
88D. Rekha KR, Selvakumar GP, Sethupathy S, Santha K, Sivakamasundari RI. Geraniol ameliorates the motor behavior and neurotrophic factors inadequacy in MPTP-induced mice model of Parkinson's disease. J Mol Neurosci. 2013 Nov;51(3):851-62. doi: 10.1007/s12031-013-0074-9. Epub 2013 Aug 13. PMID: 23943375; PMCID: PMC3824202.
89D. Tian J, Lu Z, Wang Y, Zhang M, Wang X, Tang X, Peng X, Zeng H. Nerol triggers mitochondrial dysfunction and disruption via elevation of Ca2+ and ROS in Candida albicans. Int J Biochem Cell Biol. 2017 Apr;85:114-122. doi: 10.1016/j.biocel.2017.02.006. Epub 2017 Feb 14. PMID: 28213053.
90D. Cui L, Zhang B, Zou S, Liu J, Wang P, Li H, Zhang Z. Fenchone Ameliorates Constipation-Predominant Irritable Bowel Syndrome via Modulation of SCF/c-Kit Pathway and Gut Microbiota. J Microbiol Biotechnol. 2024 Feb 28;34(2):367-378. doi: 10.4014/jmb.2308.08011. Epub 2023 Oct 28. PMID: 38073315; PMCID: PMC10940742.
91D. Takaishi M, Uchida K, Fujita F, Tominaga M. Inhibitory effects of monoterpenes on human TRPA1 and the structural basis of their activity. J Physiol Sci. 2014 Jan;64(1):47-57. doi: 10.1007/s12576-013-0289-0. PMID: 24122170; PMCID: PMC3889502.
92D. Nawaz S, Irfan HM, Alamgeer, Arshad L, Jahan S. Attenuation of CFA-induced chronic inflammation by a bicyclic monoterpene fenchone targeting inducible nitric oxide, prostaglandins, C-reactive protein and urea. Inflammopharmacology. 2023 Oct;31(5):2479-2491. doi: 10.1007/s10787-023-01333-7. Epub 2023 Sep 9. PMID: 37689616.
93D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 14525, Fenchone. Retrieved June 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Fenchone.
94D. Bashir A, Mushtaq MN, Younis W, Anjum I. Fenchone, a monoterpene: Toxicity and diuretic profiling in rats. Front Pharmacol. 2023 Jan 26;14:1119360. doi: 10.3389/fphar.2023.1119360. PMID: 36778012; PMCID: PMC9909529.
95D. Vogt-Eisele AK, Weber K, Sherkheli MA, Vielhaber G, Panten J, Gisselmann G, Hatt H. Monoterpenoid agonists of TRPV3. Br J Pharmacol. 2007 Jun;151(4):530-40. doi: 10.1038/sj.bjp.0707245. Epub 2007 Apr 10. PMID: 17420775; PMCID: PMC2013969.
96D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 440966, (-)-Camphene. Retrieved June 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/440966.
97D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 92221, (+)-Camphene. Retrieved June 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/92221.
98D. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 6616, Camphene. Retrieved June 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Camphene.
99D. Stamatiou R, Anagnostopoulou M, Ioannidou-Kabouri K, Rapti C, Lazou A. Camphene as a Protective Agent in Myocardial Ischemia/Reperfusion Injury. Antioxidants (Basel). 2024 Mar 28;13(4):405. doi: 10.3390/antiox13040405. PMID: 38671853; PMCID: PMC11047447.
1E. Yang L, Liu H, Xia D, Wang S. Antioxidant Properties of Camphene-Based Thiosemicarbazones: Experimental and Theoretical Evaluation. Molecules. 2020 Mar 6;25(5):1192. doi: 10.3390/molecules25051192. PMID: 32155763; PMCID: PMC7179440.
2E. Spiteller G. Peroxyl radicals are essential reagents in the oxidation steps of the Maillard reaction leading to generation of advanced glycation end products. Ann N Y Acad Sci. 2008 Apr;1126:128-33. doi: 10.1196/annals.1433.031. PMID: 18448806.
3E. MDPI. (n.d.). Cedrol exhibits antinociceptive effects via TRPA1 and TRPV1 modulation. Molecules, 29(4), 815. Retrieved 11/25/2024 from https://www.mdpi.com/1420-3049/29/4/815
4E. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 65575, Cedrol. Retrieved June 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Cedrol.
5E. Wisconsin Horticulture - Division of Extension. Malabar spinach, Basella alba. Retrieved 6/21/2024 from https://hort.extension.wisc.edu/articles/malabar-spinach-basella-alba/
6E. Xu C, Jin SQ, Jin C, Dai ZH, Wu YH, He GL, Ma HW, Xu CY, Fang WL. Cedrol, a Ginger-derived sesquiterpineol, suppresses estrogen-deficient osteoporosis by intervening NFATc1 and reactive oxygen species. Int Immunopharmacol. 2023 Apr;117:109893. doi: 10.1016/j.intimp.2023.109893. Epub 2023 Feb 27. PMID: 36842234.
7E. Zhang YM, Shen J, Zhao JM, Guan J, Wei XR, Miao DY, Li W, Xie YC, Zhao YQ. Cedrol from Ginger Ameliorates Rheumatoid Arthritis via Reducing Inflammation and Selectively Inhibiting JAK3 Phosphorylation. J Agric Food Chem. 2021 May 12;69(18):5332-5343. doi: 10.1021/acs.jafc.1c00284. Epub 2021 Apr 28. Erratum in: J Agric Food Chem. 2021 Jul 21;69(28):8063. doi: 10.1021/acs.jafc.1c03690. PMID: 33908779.
8E. Zhang Y, Liu Y, Peng F, Wei X, Hao H, Li W, Zhao Y. Cedrol from ginger alleviates rheumatoid arthritis through dynamic regulation of intestinal microenvironment. Food Funct. 2022 Nov 14;13(22):11825-11839. doi: 10.1039/d2fo01983c. PMID: 36314362.
9E. Zhao Y, Li M, Guo J, Fang J, Geng R, Wang Y, Liu T, Kang SG, Huang K, Tong T. Cedrol, a Major Component of Cedarwood Oil, Ameliorates High-Fat Diet-Induced Obesity in Mice. Mol Nutr Food Res. 2023 Jul;67(14):e2200665. doi: 10.1002/mnfr.202200665. Epub 2023 May 23. PMID: 37143286.
10E. Yun HJ, Jeoung DJ, Jin S, Park JH, Lee EW, Lee HT, Choi YH, Kim BW, Kwon HJ. Induction of Cell Cycle Arrest, Apoptosis, and Reducing the Expression of MCM Proteins in Human Lung Carcinoma A549 Cells by Cedrol, Isolated from Juniperus chinensis. J Microbiol Biotechnol. 2022 Jul 28;32(7):918-926. doi: 10.4014/jmb.2205.05012. Epub 2022 Jul 1. PMID: 35880481; PMCID: PMC9628924.
11E. Zhang Z, Li M, Tan Q, Chen J, Sun J, Li J, Sun L, Chen N, Song Q, Zhao X, Li H, Zhang X. A moderate anticoccidial effect of cedrol on Eimeria tenella in broiler chickens. Parasitol Int. 2023 Dec;97:102779. doi: 10.1016/j.parint.2023.102779. Epub 2023 Jul 13. PMID: 37451395.
12E. Zhang Y, Wang JW, Qu FZ, Zhang YM, Su GY, Zhao YQ. Hair growth promotion effect of cedrol cream and its dermatopharmacokinetics. RSC Adv. 2018 Dec 18;8(73):42170-42178. doi: 10.1039/c8ra08667b. PMID: 35558774; PMCID: PMC9092075.
13E. Zhou Y, Jia L, Zhang G, Chen G, Zhou D, Shi X, Fu Q, Li N. Cedrol-loaded dissolvable microneedles based on flexible backing for promoting hair growth. Expert Opin Drug Deliv. 2023 Jul-Dec;20(9):1267-1276. doi: 10.1080/17425247.2023.2244413. Epub 2023 Aug 8. PMID: 37553988.
14E. Forouzanfar F, Pourbagher-Shahri AM, Ghazavi H. Evaluation of Antiarthritic and Antinociceptive Effects of Cedrol in a Rat Model of Arthritis. Oxid Med Cell Longev. 2022 Apr 25;2022:4943965. doi: 10.1155/2022/4943965. PMID: 35509836; PMCID: PMC9060983.
15E. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 10364, Carvacrol. Retrieved November 26, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Carvacrol.
16E. Mączka W, Twardawska M, Grabarczyk M, Wińska K. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics (Basel). 2023 Apr 27;12(5):824. doi: 10.3390/antibiotics12050824. PMID: 37237727; PMCID: PMC10215463.
17E. Lozon Y, Sultan A, Lansdell SJ, Prytkova T, Sadek B, Yang KH, Howarth FC, Millar NS, Oz M. Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol. Eur J Pharmacol. 2016 Apr 5;776:44-51. doi: 10.1016/j.ejphar.2016.02.004. Epub 2016 Feb 2. PMID: 26849939.
18E. Yousef EH, Abo El-Magd NF, El Gayar AM. Carvacrol enhances anti-tumor activity and mitigates cardiotoxicity of sorafenib in thioacetamide-induced hepatocellular carcinoma model through inhibiting TRPM7. Life Sci. 2023 Jul 1;324:121735. doi: 10.1016/j.lfs.2023.121735. Epub 2023 May 2. PMID: 37142088.
19E. Melo FH, Moura BA, de Sousa DP, de Vasconcelos SM, Macedo DS, Fonteles MM, Viana GS, de Sousa FC. Antidepressant-like effect of carvacrol (5-Isopropyl-2-methylphenol) in mice: involvement of dopaminergic system. Fundam Clin Pharmacol. 2011 Jun;25(3):362-7. doi: 10.1111/j.1472-8206.2010.00850.x. PMID: 20608992.
20E. Sharifi-Rad M, Varoni EM, Iriti M, Martorell M, Setzer WN, Del Mar Contreras M, Salehi B, Soltani-Nejad A, Rajabi S, Tajbakhsh M, Sharifi-Rad J. Carvacrol and human health: A comprehensive review. Phytother Res. 2018 Sep;32(9):1675-1687. doi: 10.1002/ptr.6103. Epub 2018 May 9. PMID: 29744941.
21E. Singh J, Luqman S, Meena A. Carvacrol as a Prospective Regulator of Cancer Targets/Signalling Pathways. Curr Mol Pharmacol. 2023 Mar 27;16(5):542-558. doi: 10.2174/1874467215666220705142954. PMID: 35792130.
22E. Fan K, Li X, Cao Y, Qi H, Li L, Zhang Q, Sun H. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drugs. 2015 Sep;26(8):813-23. doi: 10.1097/CAD.0000000000000263. PMID: 26214321.
23E. Priestley CM, Williamson EM, Wafford KA, Sattelle DB. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA(A) receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol. 2003 Dec;140(8):1363-72. doi: 10.1038/sj.bjp.0705542. Epub 2003 Nov 17. PMID: 14623762; PMCID: PMC1574153.
24E. Begrow F, Engelbertz J, Feistel B, Lehnfeld R, Bauer K, Verspohl EJ. Impact of thymol in thyme extracts on their antispasmodic action and ciliary clearance. Planta Med. 2010 Mar;76(4):311-8. doi: 10.1055/s-0029-1186179. Epub 2009 Oct 6. PMID: 19809973.
25E. Meeran, M. F. N., Javed, H., Al Taee, H., Azimullah, S., & Ojha, S. K. (2017). Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Frontiers in Pharmacology, 8, Article 380. https://doi.org/10.3389/fphar.2017.00380
26E. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 6989, Thymol. Retrieved November 28, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Thymol.
27E. Toschi, A., Tugnoli, B., Rossi, B. et al. Thymol modulates the endocannabinoid system and gut chemosensing of weaning pigs. BMC Vet Res 16, 289 (2020). https://doi.org/10.1186/s12917-020-02516-y
28E. Di Marzo V, Izzo AA. Endocannabinoid overactivity and intestinal inflammation. Gut. 2006 Oct;55(10):1373-6. doi: 10.1136/gut.2005.090472. PMID: 16966693; PMCID: PMC1856409.
29E. Abosamak NER, Shahin MH. Beta2 Receptor Agonists and Antagonists. [Updated 2023 Jul 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559069/
30E. Olsen RW. GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology. 2018 Jul 1;136(Pt A):10-22. doi: 10.1016/j.neuropharm.2018.01.036. Epub 2018 Jan 31. PMID: 29407219; PMCID: PMC6027637.
31E. Triggle DJ. L-type calcium channels. Curr Pharm Des. 2006;12(4):443-57. doi: 10.2174/138161206775474503. PMID: 16472138.
32E. Striessnig J, Ortner NJ, Pinggera A. Pharmacology of L-type Calcium Channels: Novel Drugs for Old Targets? Curr Mol Pharmacol. 2015;8(2):110-22. doi: 10.2174/1874467208666150507105845. PMID: 25966690; PMCID: PMC5384371.
33E. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 10887971, Sabinene. Retrieved June 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Sabinene.
34E. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 11051711, (-)-Sabinene. Retrieved June 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/11051711.
35E. Ryu Y, Lee D, Jung SH, Lee KJ, Jin H, Kim SJ, Lee HM, Kim B, Won KJ. Sabinene Prevents Skeletal Muscle Atrophy by Inhibiting the MAPK-MuRF-1 Pathway in Rats. Int J Mol Sci. 2019 Oct 8;20(19):4955. doi: 10.3390/ijms20194955. PMID: 31597276; PMCID: PMC6801606.
36E. Valente J, Zuzarte M, Gonçalves MJ, Lopes MC, Cavaleiro C, Salgueiro L, Cruz MT. Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food Chem Toxicol. 2013 Dec;62:349-54. doi: 10.1016/j.fct.2013.08.083. Epub 2013 Sep 5. PMID: 24012643.
37E. Hung NH, Quan PM, Satyal P, Dai DN, Hoa VV, Huy NG, Giang LD, Ha NT, Huong LT, Hien VT, Setzer WN. Acetylcholinesterase Inhibitory Activities of Essential Oils from Vietnamese Traditional Medicinal Plants. Molecules. 2022 Oct 20;27(20):7092. doi: 10.3390/molecules27207092. PMID: 36296686; PMCID: PMC9610647.
38E. Leafly. (n.d.). Ocimene: Effects, benefits, and where to find it. Retrieved 12/7/2024, from https://www.leafly.com
39E. Papke RL, Horenstein NA. Therapeutic Targeting of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev. 2021 Jul;73(3):1118-1149. doi: 10.1124/pharmrev.120.000097. PMID: 34301823; PMCID: PMC8318519.
40E. Pohanka M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int J Mol Sci. 2012;13(2):2219-2238. doi: 10.3390/ijms13022219. Epub 2012 Feb 17. PMID: 22408449; PMCID: PMC3292018.
41E. Theriot J, Wermuth HR, Ashurst JV. Antiemetics, Selective 5-HT3 Antagonists. [Updated 2024 Apr 19]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513318/
42E. Komorowska-Müller JA, Schmöle AC. CB2 Receptor in Microglia: The Guardian of Self-Control. Int J Mol Sci. 2020 Dec 22;22(1):19. doi: 10.3390/ijms22010019. PMID: 33375006; PMCID: PMC7792761.
43E. Foong AL, Grindrod KA, Patel T, Kellar J. Demystifying serotonin syndrome (or serotonin toxicity). Can Fam Physician. 2018 Oct;64(10):720-727. PMID: 30315014; PMCID: PMC6184959.
44E. Tagen M, Klumpers LE. Review of delta-8-tetrahydrocannabinol (Δ8 -THC): Comparative pharmacology with Δ9 -THC. Br J Pharmacol. 2022 Aug;179(15):3915-3933. doi: 10.1111/bph.15865. Epub 2022 Jun 1. Erratum in: Br J Pharmacol. 2023 Jan;180(1):130. doi: 10.1111/bph.15990. PMID: 35523678.
45E. Weston-Green K, Clunas H, Jimenez Naranjo C. A Review of the Potential Use of Pinene and Linalool as Terpene-Based Medicines for Brain Health: Discovering Novel Therapeutics in the Flavours and Fragrances of Cannabis. Front Psychiatry. 2021 Aug 26;12:583211. doi: 10.3389/fpsyt.2021.583211. PMID: 34512404; PMCID: PMC8426550.